1. Search Result
Search Result
Results for "

Prostate cancer imaging

" in MedChemExpress (MCE) Product Catalog:

15

Inhibitors & Agonists

5

Peptides

Targets Recommended:
Cat. No. Product Name Target Research Areas Chemical Structure
  • HY-148761

    PSMA Cancer
    PSMA I&T is an effective inhibitor of prostate-specific membrane antigen (PSMA). PSMA I&T can be used for SPECT/CT imaging and radionuclide studies in triple-negative breast cancer and prostate cancer (PCa) .
    PSMA I&T
  • HY-P5292A

    PSMA Cancer
    HYNIC-iPSMA TFA is a ligand for molecular imaging of tumors. Hynic-ipsma consists of two components: HYNIC (6-hydrazinonicotinamide) and iPSMA (Inhibitor of Prostate-Specific Membrane Antigen). HYNIC is a compound used to attach radioactive isotopes to targeted molecules. iPSMA is a specific inhibitor used to inhibit prostate-specific membrane antigen (PSMA). 68GA-labeled iPSMA has been used to detect prostate cancer by PET imaging. The further 99mTc-EDDA/HYNIC-iPSMA TFA has excellent specificity and sensitivity .
    HYNIC-iPSMA TFA
  • HY-153550

    PSMA Others
    PSMA-1007 is a prostate-specific membrane antigen (PSMA) ligand. 18F-labeled PSMA-1007 can be used as a PET tracer for prostate cancer imaging .
    PSMA-1007
  • HY-P5290

    PSMA Cancer
    HYNIC-PSMA is a ligand for molecular imaging of tumors. Hynic-psma consists of two components: HYNIC (6-hydrazinonicotinamide) and PSMA (Prostate-Specific Membrane Antigen). HYNIC is a compound used to attach radioactive isotopes to targeted molecules, such as 188Re-HYNIC-PSMA. PSMA is a membrane antigen that is specifically expressed on the surface of prostate cancer cells. HYNIC-PSMA can be used in prostate cancer research .
    HYNIC-PSMA
  • HY-125399

    HBED-CC-PSMA

    PSMA Radionuclide-Drug Conjugates (RDCs) Cancer
    PSMA-11 is a small molecule ligand that targets prostate-specific membrane antigen (PSMA) and has the ability to inhibit PSMA activity. PSMA-11 can be used to synthesize 68Ga-PSMA-11, a positron emission tomography (PET) tracer that can be used to image advanced prostate cancer .
    PSMA-11
  • HY-158125

    PSMA Cancer
    PSMA binder-2 is a ligand for PSMA and can be used to synthesize Ac-PSMA-trillium. Ac-PSMA-trillium is a suitable PSMA-targeting compound with improved PSMA binding properties and pharmacokinetic properties. PSMA ligands have different biological applications after being modified with different radioactive isotopes. If labeled with 111In, it can be used as DOTA chelating agent and imaging agent. Or labeled with 225Ac as a Macropa chelator for targeted radionuclide therapy (TRT) in the study of metastatic castration-resistant prostate cancer (mCRPC) .
    PSMA binder-2
  • HY-P5292

    PSMA Cancer
    HYNIC-iPSMA is a ligand for molecular imaging of tumors. Hynic-ipsma consists of two components: HYNIC (6-hydrazinonicotinamide) and iPSMA (Inhibitor of Prostate-Specific Membrane Antigen). HYNIC is a compound used to attach radioactive isotopes to targeted molecules. iPSMA is a specific inhibitor used to inhibit prostate-specific membrane antigen (PSMA). 68GA-labeled iPSMA has been used to detect prostate cancer by PET imaging. The further 99mTc-EDDA/HYNIC-iPSMA has excellent specificity and sensitivity .
    HYNIC-iPSMA
  • HY-158251

    Others Cancer
    BIBD-300 is a PARP-1 imaging agent with high affinity for PARP-1. BIBD-300 can accurately localize C6 and U87MG tumors, which can be used for research in the diagnosis of breast cancer, prostate cancer, glioma, and liver cancer .
    BIBD-300
  • HY-149869

    PSMA Cancer
    PSMA-IN-3 (compound 17) is a novel high-affinity PSMA inhibitor with an IC50 value of 13 nM. PSMA-IN-3 is suitable for developing an 18F-labeled radioligand for PET imaging of PSMA in prostate cancer .
    PSMA-IN-3
  • HY-161699

    PSMA Cancer
    SDTWS01 is a novel 68Ga-labeled prostate-specific membrane antigen (PSMA) targeting tracer. The inhibition constant (Ki) of SDTWS01 for PSMA is in the nanomolar range (less than 10 nM), demonstrating high affinity for PSMA. SDTWS01 exhibits significant tumor uptake and superior PET imaging effects. SDTWS01 can be utilized for diagnostic research of prostate cancer .
    SDTWS01
  • HY-149298

    PSMA Cancer
    PSMA-IN-2 is an inhibitor of PSMA with a Ki value of 1.07 nM. PSMA-IN-2 displays favorable in vivo NIR imaging (λEM = 1088 nm, λex = 808 nm), and can be used for NIRII image-guided tumor resection surgery in PSMA-positive tumor-bearing mice .
    PSMA-IN-2
  • HY-121659

    Others Cancer
    DCFBC is a prostate-specific membrane antigen (PSMA) inhibitor for small animal positron emission tomography (PET) imaging. [18F]DCFBC was prepared by reacting fluorine-18 labeled phenyl bromide with the precursor (S)-2-[3-[(R)-1-carboxy-2-thiolethyl]urea]-glutaric acid in ammonia-saturated methanol at 60°C for 10 min and then purified by C-18 reversed-phase HPLC. [18F]DCFBC was injected via the tail vein in severe combined immunodeficient mice for in vitro biodistribution or imaging. For in vitro biodistribution studies, mice were sacrificed at 5, 15, 30, 60, and 120 min after injection, and tumors, blood, and major organs were collected, weighed, and radioactivity was counted. Imaging was performed using a GE eXploreVista small animal PET scanner, collecting 12 consecutive 10-min frames. Results showed that the radiochemical yield of [18F]DCFBC averaged 16±6% (n=8) from 4-[18F]fluorophenyl bromide. Specific radioactivity ranged from 13 to 133 GBq/Amol (350-3600 Curie/mmol) with an average of 52 GBq/Amol (1392 Curie/mmol; n=6). Biodistribution and imaging studies showed high uptake of [18F]DCFBC in PIP tumors and almost no uptake in FLU tumors. High radiopharmaceutical uptake was also seen in the kidney and bladder; however, radioactivity washout from these organs was faster than from the PIP tumors. Maximum PIP tumor uptake was reached at 60 min post-injection at 8.16±2.55% injected dose/g and decreased to 4.69±0.89 at 120 min post-injection. The PIP tumor-to-muscle ratio was 20 at 120 min post-injection. Based on mouse biodistribution, the dose-limiting organ was the kidney (estimated human absorbed dose: 0.05 mGy/MBq; 0.2 rad/mCi). Conclusions: [18F]DCFBC localizes specifically to PSMA+ expressing tumors in mice and is suitable for small animal PET imaging. This novel radiopharmaceutical is an attractive candidate for further study in PET imaging of prostate cancer.
    DCFBC
  • HY-158123

    PSMA Cancer
    PSMA binder-1 is a ligand for PSMA and can be used to synthesize Ac-PSMA-trillium. Ac-PSMA-trillium is a suitable PSMA-targeting compound with improved PSMA binding properties and pharmacokinetic properties. PSMA ligands have different biological applications after being modified with different radioactive isotopes. If labeled with 111In, it can be used as DOTA chelating agent and imaging agent. Or it can be labeled with 225Ac (to obtain Actinium-225-PSMA-Trillium (BAY 3563254)), which has a radioactive killing effect; it can be used as a Macropa chelator for targeted radionuclide therapy (TRT) , has a strong inhibitory effect on metastatic castration-resistant prostate cancer (mCRPC) .
    PSMA binder-1
  • HY-158122

    DNA-PK Cancer
    Lys(CO-C3-p-I-Ph)-O-tBu is a pharmacokinetic modifier (PK modifier) that can improve the PK properties of PSMA ligand molecules. Lys(CO-C3-p-I-Ph)-O-tBu can increase the residence time of PSMA ligand in plasma by increasing its binding capacity to albumin. Lys(CO-C3-p-I-Ph)-O-tBu also reduces salivary gland absorption, possibly extending the half-life of the active compound. Ac-PSMA-trillium is a suitable PSMA-targeting compound that has different biological applications after modification with different radioactive isotopes. If labeled with 111In, it can be used as DOTA chelating agent and imaging agent. Or labeled with 225Ac as a Macropa chelator for targeted radionuclide therapy (TRT) in the study of metastatic castration-resistant prostate cancer (mCRPC) .
    Lys(CO-C3-p-I-Ph)-O-tBu
  • HY-158118

    DNA-PK Cancer
    Lys(CO-C3-p-I-Ph)-OMe is a pharmacokinetic modifier (PK modifier) that can improve the PK properties of PSMA ligand molecules (such as Ac-PSMA-trillium). Lys(CO-C3-p-I-Ph)-OMe can increase the residence time of Ac-PSMA-trillium in plasma by increasing its binding capacity to albumin. Lys(CO-C3-p-I-Ph)-OMe also reduces salivary gland absorption of Ac-PSMA-trillium, potentially extending its half-life. Ac-PSMA-trillium is a suitable PSMA-targeting compound that has different biological applications after modification with different radioactive isotopes. If labeled with 111In, it can be used as DOTA chelating agent and imaging agent. Or labeled with 225Ac as a Macropa chelator for targeted radionuclide therapy (TRT) in the study of metastatic castration-resistant prostate cancer (mCRPC) .
    Lys(CO-C3-p-I-Ph)-OMe

Inquiry Online

Your information is safe with us. * Required Fields.

Salutation

 

Country or Region *

Applicant Name *

 

Organization Name *

Department *

     

Email Address *

 

Product Name *

Cat. No.

 

Requested quantity *

Phone Number *

     

Remarks

Inquiry Online

Inquiry Information

Product Name:
Cat. No.:
Quantity:
MCE Japan Authorized Agent: