1. Academic Validation
  2. Differential inhibition of T-type calcium channels by neuroleptics

Differential inhibition of T-type calcium channels by neuroleptics

  • J Neurosci. 2002 Jan 15;22(2):396-403. doi: 10.1523/JNEUROSCI.22-02-00396.2002.
Celia M Santi 1 Francisco S Cayabyab Kathy G Sutton John E McRory Janette Mezeyova Kevin S Hamming David Parker Anthony Stea Terrance P Snutch
Affiliations

Affiliation

  • 1 Biotechnology Laboratory, University of British Columbia, Vancouver, British Columbia, Canada.
Abstract

T-type calcium channels play critical roles in cellular excitability and have been implicated in the pathogenesis of a variety of neurological disorders including epilepsy. Although there have been reports that certain neuroleptics that primarily target D2 dopamine receptors and are used to treat psychoses may also interact with T-type CA channels, there has been no systematic examination of this phenomenon. In the present paper we provide a detailed analysis of the effects of several widely used neuroleptic agents on a family of exogenously expressed neuronal T-type CA channels (alpha1G, alpha1H, and alpha1I subtypes). Among the neuroleptics tested, the diphenylbutylpiperidines pimozide and penfluridol were the most potent T-type channel blockers with Kd values (approximately 30-50 nm and approximately 70-100 nm, respectively), in the range of their antagonism of the D2 Dopamine Receptor. In contrast, the butyrophenone haloperidol was approximately 12- to 20-fold less potent at blocking the various T-type CA channels. The diphenyldiperazine flunarizine was also less potent compared with the diphenylbutylpiperadines and preferentially blocked alpha1G and alpha1I T-type channels compared with alpha1H. The various neuroleptics did not significantly affect T-type channel activation or kinetic properties, although they shifted steady-state inactivation profiles to more negative values, indicating that these agents preferentially bind to channel inactivated states. Overall, our findings indicate that T-type CA channels are potently blocked by a subset of neuroleptic agents and suggest that the action of these drugs on T-type CA channels may significantly contribute to their therapeutic efficacy.

Figures