1. Academic Validation
  2. Participation of kin17 protein in replication factories and in other DNA transactions mediated by high molecular weight nuclear complexes

Participation of kin17 protein in replication factories and in other DNA transactions mediated by high molecular weight nuclear complexes

  • Mol Cancer Res. 2003 May;1(7):519-31.
Denis S F Biard 1 Laurent Miccoli Emmanuelle Despras Francis Harper Evelyne Pichard Christophe Créminon Jaime F Angulo
Affiliations

Affiliation

  • 1 CEA, Commissariat à l'Energie Atomique, Laboratoire de Génétique de la Radiosensibilité, Département de Radiobiologie et de Radiopathologie, Direction des Sciences du Vivant, BP 6, 92265 Fontenay-aux-Roses, France. biard@dsvidf.cea.fr
PMID: 12754299
Abstract

The Homo sapiens kin17 ((HSA)kin17) protein is a chromatin-associated protein conserved during evolution and overproduced in certain human tumor cell lines. For the first time, immunoelectron microscopy analysis of endogenous (HSA)kin17 protein revealed an ultrastructural co-localization of (HSA)kin17 and bromodeoxyuridine (BrdUrd) at sites of DNA replication after either short (15 min) or long (120 min) pulses of BrdUrd labeling. After hydroxyurea (HU) or L-mimosine (Mimo) block and withdrawal, we observed that (HSA)kin17 was recruited onto the chromatin during the re-entry and the progression in the S phase. These results are consistent with a major role of (HSA)kin17 protein in DNA replication factories. Other treatments hampering replication fork progression and/or inducing double-strand breaks also triggered an accumulation and a concentration of the chromatin-bound (HSA)kin17 protein into large intranuclear foci 24 h post-treatment. Moreover, HU- and Mimo-induced (HSA)kin17 foci were retained in the nucleus after detergent extraction, suggesting a strong association with nuclear structures. Gel filtration analyses of cellular extracts showed that endogenous (HSA)kin17 protein co-eluted with both replication proteins RPA32 and RPA70 in a fraction containing complexes of M(r) 600,000. Interestingly, HU-induced G(1)-S arrest triggered an increase in the molecular weight of complexes containing (HSA)kin17 protein. Hence, treatments interfering with either initiation and/or elongation of DNA replication also recruited chromatin-bound (HSA)kin17 protein. We hypothesize that in the presence of unrepaired DNA damage, (HSA)kin17 protein concentrated into high molecular weight complexes probably to create a bridge that contributes to the harmonization of DNA replication and repair.

Figures