1. Academic Validation
  2. Steel factor stimulates the tyrosine phosphorylation of the proto-oncogene product, p95vav, in human hemopoietic cells

Steel factor stimulates the tyrosine phosphorylation of the proto-oncogene product, p95vav, in human hemopoietic cells

  • J Biol Chem. 1992 Sep 5;267(25):18021-5.
M Alai 1 A L Mui R L Cutler X R Bustelo M Barbacid G Krystal
Affiliations

Affiliation

  • 1 Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, Canada.
PMID: 1381360
Abstract

Steel factor (SF) (also called stem cell factor, mast cell growth factor, or c-Kit ligand) is a recently cloned hemopoietic growth factor that is produced by bone marrow stromal cells, fibroblasts, and hepatocytes. In both mouse and man it acts synergistically with several colony stimulating factors, including interleukin-3 (IL-3) and granulocyte macrophage-colony stimulating factor (GM-CSF), to induce the proliferation and differentiation of primitive hemopoietic precursor cells. In order to study its mechanism of action and to explore the molecular basis for its synergistic activity we have examined the proteins that become tyrosine phosphorylated in response to SF, IL-3, and GM-CSF. We report herein that SF, but not IL-3 or GM-CSF, dramatically stimulates the tyrosine phosphorylation of the product of the recently discovered proto-oncogene, vav, in two SF-responsive human cell lines, M07E and TF-1. Although phosphorylation is very rapid, reaching maximal levels within 2 min at 37 degrees C, co-immunoprecipitation studies suggest that c-Kit may either not associate directly with p95vav or bind to it with very low affinity. Nonetheless, our data suggest that c-Kit may utilize p95vav to mediate downstream signaling in hemopoietic cells.

Figures