1. Academic Validation
  2. The binary interacting network of the conserved oligomeric Golgi tethering complex

The binary interacting network of the conserved oligomeric Golgi tethering complex

  • J Biol Chem. 2004 Jun 4;279(23):24640-8. doi: 10.1074/jbc.M400662200.
Eva Loh 1 Wanjin Hong
Affiliations

Affiliation

  • 1 Membrane Biology Laboratory, Institute of Molecular and Cell Biology, 30 Medical Dr., Singapore 117609, Singapore.
Abstract

Several recent studies have revealed the existence of a conserved oligomeric Golgi (COG) complex consisting of several novel proteins as well as known Golgi proteins that were identified by independent approaches. The mammalian COG complex contains eight subunits: COG1/LdlBp, COG2/LdlCp, COG3/Sec34, COG4/Cod1, COG5/GTC-90/Cod4, COG6/Cod2, COG7, and COG8/Dor1. COG1, COG2, and COG7 seem structurally unique to mammalian cells, whereas the Other five subunits are structurally conserved in yeast, which also contains three Other unique proteins (COG1/Sec36p/Cod3p, COG2/Sec35p, and COG7/Cod5p). We report here the network of intermolecular interactions of the COG complex, revealed by in vitro translation and co-immunoprecipitation approaches. Our results suggest that COG4 serves as a core component of the complex by interacting directly with COG1, COG2, COG5, and COG7. COG3 is incorporated by its direct interaction with COG1 and COG2, whereas COG6 and COG8 do not interact with any individual subunit. Incorporation of COG6 into the complex depends on the concerted interaction of both COG5 and COG7, whereas optimal incorporation of COG8 depends on the concerted interaction of COG5, COG6, and COG7. Because COG4 (together with COG1, COG2, and COG3) is among the four essential genes of the COG complex in yeast, this molecular network highlights the structural basis for a crucial role of COG4 in the assembly/function of the complex. A model for the assembly of the COG complex is presented.

Figures