1. Academic Validation
  2. C-terminal tail of FGF19 determines its specificity toward Klotho co-receptors

C-terminal tail of FGF19 determines its specificity toward Klotho co-receptors

  • J Biol Chem. 2008 Nov 28;283(48):33304-9. doi: 10.1074/jbc.M803319200.
Xinle Wu 1 Bryan Lemon XiaoFan Li Jamila Gupte Jennifer Weiszmann Jennitte Stevens Nessa Hawkins Wenyan Shen Richard Lindberg Jin-Long Chen Hui Tian Yang Li
Affiliations

Affiliation

  • 1 Amgen Inc., South San Francisco, California 94080, USA.
Abstract

FGF19 subfamily proteins (FGF19, FGF21, and FGF23) are unique members of fibroblast growth factors (FGFs) that regulate energy, bile acid, glucose, lipid, phosphate, and vitamin D homeostasis in an endocrine fashion. Their activities require the presence of alpha or betaKlotho, two related single-pass transmembrane proteins, as co-receptors in relevant target tissues. We previously showed that FGF19 can bind to both alpha and betaKlotho, whereas FGF21 and FGF23 can bind only to either betaKlotho or alphaKlotho, respectively in vitro. To determine the mechanism regulating the binding and specificity among FGF19 subfamily members to Klotho family proteins, chimeric proteins between FGF19 subfamily members or chimeric proteins between Klotho family members were constructed to probe the interaction between those two families. Our results showed that a chimera of FGF19 with the FGF21 C-terminal tail interacts only with betaKlotho and a chimera with the FGF23 C-terminal tail interacts only with alphaKlotho. FGF signaling assays also reflected the change of specificity we observed for the chimeras. These results identified the C-terminal tail of FGF19 as a region necessary for its recognition of Klotho family proteins. In addition, chimeras between alpha and betaKlotho were also generated to probe the regions in Klotho proteins that are important for signaling by this FGF subfamily. Both FGF23 and FGF21 require intact alpha or betaKlotho for signaling, respectively, whereas FGF19 can signal through a Klotho chimera consisting of the N terminus of alphaKlotho and the C terminus of betaKlotho. Our results provide the first glimpse of the regions that regulate the binding specificity between this unique family of FGFs and their co-receptors.

Figures