1. Academic Validation
  2. Disulfide assignments in recombinant mouse and human interleukin 4

Disulfide assignments in recombinant mouse and human interleukin 4

  • Biochemistry. 1991 Feb 12;30(6):1515-23. doi: 10.1021/bi00220a011.
C Carr 1 S Aykent N M Kimack A D Levine
Affiliations

Affiliation

  • 1 Department of Biological Sciences, Monsanto Company, St. Louis, Missouri 63198.
Abstract

The disulfide pairings of mouse and human interleukin 4 (IL-4) proteins have been determined. The purified proteins, synthesized by recombinant DNA technology, are fully active as judged by their ability to stimulate an appropriate biological response in a variety of functional assays. Peptide maps were produced by digesting the proteins with pepsin and separating the resulting fragments by reverse-phase HPLC using linear acetonitrile-TFA gradients. Cystine-containing Peptides were identified by determining which reverse-phase peaks showed an altered elution pattern after reduction. These Peptides were purified further and defined by composition and sequence analysis. Three sets of disulfide-linked Peptides were consistently identified for each protein. For mouse IL-4, the first and fifth, second and fourth, and third and sixth cysteines are joined. The disulfide bonds in human IL-4 are between the first and sixth, second and fourth, and third and fifth cysteines. A large double-loop region within the central three-fifths of each protein is stabilized by these bonds. Sequence analysis of the Peptides containing the third and fifth cysteines of human IL-4 also demonstrated that only one of the potential N-glycosylation sites is used by C127 mammary tumor cells. Complete alkylation of mouse IL-4 under mild conditions completely destroyed its biological activity in a hematopoietic precursor cell proliferation assay.

Figures