1. Academic Validation
  2. Fluorinated N,N-dialkylaminostilbenes for Wnt pathway inhibition and colon cancer repression

Fluorinated N,N-dialkylaminostilbenes for Wnt pathway inhibition and colon cancer repression

  • J Med Chem. 2011 Mar 10;54(5):1288-97. doi: 10.1021/jm101248v.
Wen Zhang 1 Vitaliy Sviripa Liliia M Kril Xi Chen Tianxin Yu Jiandang Shi Piotr Rychahou B Mark Evers David S Watt Chunming Liu
Affiliations

Affiliation

  • 1 Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40506-0509, United States.
Abstract

Colorectal Cancer (CRC) is the second leading cause of cancer-related mortality in the United States. CRC is initiated by mutations of the tumor suppressor gene, adenomatous polyposis coli (APC), or β-catenin gene. These mutations stabilize β-catenin and constitutively activate Wnt/β-catenin target genes, such as c-Myc and cyclin D1, ultimately leading to Cancer. Naturally occurring stilbene derivatives, resveratrol and pterostilbene, inhibit Wnt signaling and repress CRC cell proliferation but are ineffective at concentrations less than 10 μM. To understand the structure--activity relationship within these stilbene derivatives and to develop more efficacious Wnt inhibitors than these Natural Products, we synthesized and evaluated a panel of fluorinated N,N-dialkylaminostilbenes. Among this panel, (E)-4-(2,6-difluorostyryl)-N,N-dimethylaniline (4r) inhibits Wnt signaling at nanomolar levels and inhibits the growth of human CRC cell xenografts in athymic nude mice at a dosage of 20 mg/kg. These fluorinated N,N-dialkylaminostilbenes appear to inhibit Wnt signaling downstream of β-catenin, probably at the transcriptional level.

Figures
Products
  • Cat. No.
    Product Name
    Description
    Target
    Research Area
  • HY-136145
    99.40%, MAT2A Inhibitor
    Wnt