1. Academic Validation
  2. Effects of terutroban, a thromboxane/prostaglandin endoperoxide receptor antagonist, on retinal vascularity in diabetic rats

Effects of terutroban, a thromboxane/prostaglandin endoperoxide receptor antagonist, on retinal vascularity in diabetic rats

  • Diabetes Metab Res Rev. 2012 Feb;28(2):132-8. doi: 10.1002/dmrr.1283.
J P De La Cruz 1 N Jebrouni J A López-Villodres J Muñoz-Marín A Guerrero J A González-Correa
Affiliations

Affiliation

  • 1 Laboratorio de Investigaciones Antitrombóticas e IsquemiaTisular (LIAIT), Department of Pharmacologyand Therapeutics, School of Medicine, University of Málaga, Málaga, Spain.
Abstract

Background: The aim of the present study is to investigate the effectiveness of terutroban, a selective antagonist of the thromboxane/prostaglandin endoperoxide receptor, in preventing retinal ischaemia in a model of diabetes in rats.

Methods: Experimental diabetes was induced with streptozotocin. Rats were distributed into five groups (n = 20): (1) non-diabetic rats, (2) rats with diabetes (DR) treated with vehicle, (3) DR treated with aspirin (2 mg/kg/day p.o.), (4) DR treated with terutroban (5 mg/kg/day p.o.), (5) DR treated with terutroban (30 mg/kg/day p.o.). The follow-up period was 3 months. The main assessment was the percentage of retinal surface covered with vessels permeable to peroxidase. Platelet aggregation, aortic prostacyclin and nitric oxide production, plasma levels of lipid peroxides (thiobarbituric-acid-reactive substances) and 3-nitrotyrosine and serum levels of IL-6 were evaluated.

Results: Diabetes induced a reduction in retinal vascularity (76.9%), aortic prostacyclin (37.8%) and nitric oxide production (35.0%), and increased platelet aggregation, lipid peroxides, 3-nitrotyrosine. When compared with vehicle-treated DR, terutroban increased the percentage of retinal surface covered by PVPP (38% for terutroban-5 and 61% for terutroban-30), aortic prostacyclin (188% for terutroban-5 and 146% for terutroban-30) and nitric oxide production (320% for terutroban-5 and 390% for terutroban-30). Moreover, terutroban reduced platelet reactivity (27.8–95.1%, according to the inducer), lipid peroxides (60.7% for terutroban-5 and 50.0% for terutroban-30), 3-nitrotyrosine (43.8% for terutroban-5 and 36.8% for terutroban-30) and IL-6 concentration (18.0% for terutroban-30). The effect of terutroban in retinal, nitrosative and aortic parameters was significantly higher than that of aspirin.

Conclusions: Terutroban significantly protected retinal vascularity from ischaemia in experimental diabetes, and this result could be attributed not only to its antiplatelet/antithrombotic activities but also to its vascular properties.

Figures
Products