1. Academic Validation
  2. Integrins αvβ3 and α4β1 act as coreceptors for fractalkine, and the integrin-binding defective mutant of fractalkine is an antagonist of CX3CR1

Integrins αvβ3 and α4β1 act as coreceptors for fractalkine, and the integrin-binding defective mutant of fractalkine is an antagonist of CX3CR1

  • J Immunol. 2012 Dec 15;189(12):5809-19. doi: 10.4049/jimmunol.1200889.
Masaaki Fujita 1 Yoko K Takada Yoshikazu Takada
Affiliations

Affiliation

  • 1 Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA 95817, USA.
Abstract

The membrane-bound chemokine fractalkine (FKN, CX3CL1) on endothelial cells plays a role in leukocyte trafficking. The chemokine domain (FKN-CD) is sufficient for inducing FKN signaling (e.g., Integrin activation), and FKN-CD binds to its receptor CX3CR1 on leukocytes. Whereas previous studies suggest that FKN-CD does not directly bind to integrins, our docking simulation studies predicted that FKN-CD directly interacts with Integrin α(v)β(3). Consistent with this prediction, we demonstrated that FKN-CD directly bound to α(v)β(3) and α(4)β(1) at a very high affinity (K(D) of 3.0 × 10(-10) M to α(v)β(3) in 1 mM Mn(2+)). Also, membrane-bound FKN bound to integrins α(v)β(3) and α(4)β(1), suggesting that the FKN-CD/Integrin interaction is biologically relevant. The binding site for FKN-CD in α(v)β(3) was similar to those for other known α(v)β(3) ligands. Wild-type FKN-CD induced coprecipitation of integrins and CX3CR1 in U937 cells, suggesting that FKN-CD induces ternary complex formation (CX3CR1, FKN-CD, and Integrin). Based on the docking model, we generated an integrin-binding defective FKN-CD mutant (the K36E/R37E mutant). K36E/R37E was defective in ternary complex formation and Integrin activation, whereas K36E/R37E still bound to CX3CR1. These results suggest that FKN-CD binding to CX3CR1 is not sufficient for FKN signaling, and that FKN-CD binding to integrins as coreceptors and the resulting ternary complex formation are required for FKN signaling. Notably, excess K36E/R37E suppressed Integrin activation induced by wild-type FKN-CD and effectively suppressed leukocyte infiltration in thioglycollate-induced peritonitis. These findings suggest that K36E/R37E acts as a dominant-negative CX3CR1 antagonist and that FKN-CD/Integrin interaction is a novel therapeutic target in inflammatory diseases.

Figures