1. Academic Validation
  2. Development of potent dipeptide-type SARS-CoV 3CL protease inhibitors with novel P3 scaffolds: design, synthesis, biological evaluation, and docking studies

Development of potent dipeptide-type SARS-CoV 3CL protease inhibitors with novel P3 scaffolds: design, synthesis, biological evaluation, and docking studies

  • Eur J Med Chem. 2013 Oct;68:372-84. doi: 10.1016/j.ejmech.2013.07.037.
Pillaiyar Thanigaimalai 1 Sho Konno Takehito Yamamoto Yuji Koiwai Akihiro Taguchi Kentaro Takayama Fumika Yakushiji Kenichi Akaji Shen-En Chen Aurash Naser-Tavakolian Arne Schön Ernesto Freire Yoshio Hayashi
Affiliations

Affiliation

  • 1 Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan.
Abstract

We report the design and synthesis of a series of dipeptide-type inhibitors with novel P3 scaffolds that display potent inhibitory activity against SARS-CoV 3CLpro. A docking study involving binding between the dipeptidic lead compound 4 and 3CLpro suggested the modification of a structurally flexible P3 N-(3-methoxyphenyl)glycine with various rigid P3 moieties in 4. The modifications led to the identification of several potent derivatives, including 5c-k and 5n with the inhibitory activities (Ki or IC50) in the submicromolar to nanomolar range. Compound 5h, in particular, displayed the most potent inhibitory activity, with a Ki value of 0.006 μM. This potency was 65-fold higher than the potency of the lead compound 4 (Ki=0.39 μM). In addition, the Ki value of 5h was in very good agreement with the binding affinity (16 nM) observed in isothermal titration calorimetry (ITC). A SAR study around the P3 group in the lead 4 led to the identification of a rigid indole-2-carbonyl unit as one of the best P3 moieties (5c). Further optimization showed that a methoxy substitution at the 4-position on the indole unit was highly favorable for enhancing the inhibitory potency.

Keywords

Cysteine protease inhibitors; Dipeptide; Peptidomimetics; SARS; SARS-CoV 3CL(pro).

Figures
Products
  • Cat. No.
    Product Name
    Description
    Target
    Research Area
  • HY-139311
    98.78%, 3CLpro Inhibitor