1. Academic Validation
  2. Glycogenomics as a mass spectrometry-guided genome-mining method for microbial glycosylated molecules

Glycogenomics as a mass spectrometry-guided genome-mining method for microbial glycosylated molecules

  • Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):E4407-16. doi: 10.1073/pnas.1315492110.
Roland D Kersten 1 Nadine Ziemert David J Gonzalez Brendan M Duggan Victor Nizet Pieter C Dorrestein Bradley S Moore
Affiliations

Affiliation

  • 1 Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, Departments of Pediatrics, Pharmacology, and Chemistry and Biochemistry, and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093.
Abstract

Glycosyl groups are an essential mediator of molecular interactions in cells and on cellular surfaces. There are very few methods that directly relate sugar-containing molecules to their biosynthetic machineries. Here, we introduce glycogenomics as an experiment-guided genome-mining approach for fast characterization of glycosylated Natural Products (GNPs) and their biosynthetic pathways from genome-sequenced microbes by targeting glycosyl groups in microbial metabolomes. Microbial GNPs consist of aglycone and glycosyl structure groups in which the sugar unit(s) are often critical for the GNP's bioactivity, e.g., by promoting binding to a target biomolecule. GNPs are a structurally diverse class of molecules with important pharmaceutical and agrochemical applications. Herein, O- and N-glycosyl groups are characterized in their sugar monomers by tandem mass spectrometry (MS) and matched to corresponding glycosylation genes in secondary metabolic pathways by a MS-glycogenetic code. The associated aglycone biosynthetic genes of the GNP genotype then classify the natural product to further guide structure elucidation. We highlight the glycogenomic strategy by the characterization of several bioactive glycosylated molecules and their gene clusters, including the Anticancer agent cinerubin B from Streptomyces sp. SPB74 and an Antibiotic, arenimycin B, from Salinispora arenicola CNB-527.

Keywords

deoxysugar; drug discovery; microbial genomics; polyketide; secondary metabolite.

Figures
Products