1. Academic Validation
  2. Fused heterocycles bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 2: discovery of novel [1,2,4]Triazolo[1,5-a]pyrimidines using a structure-guided core-refining approach

Fused heterocycles bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 2: discovery of novel [1,2,4]Triazolo[1,5-a]pyrimidines using a structure-guided core-refining approach

  • Eur J Med Chem. 2014 Oct 6:85:293-303. doi: 10.1016/j.ejmech.2014.07.104.
Liu Wang 1 Ye Tian 1 Wenmin Chen 1 Hong Liu 1 Peng Zhan 2 Dongyue Li 1 Huiqing Liu 3 Erik De Clercq 4 Christophe Pannecouque 4 Xinyong Liu 5
Affiliations

Affiliations

  • 1 Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012 Jinan, Shandong, PR China.
  • 2 Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012 Jinan, Shandong, PR China. Electronic address: zhanpeng1982@sdu.edu.cn.
  • 3 Institute of Pharmacology, School of Medicine, Shandong University, 44, West Culture Road, 250012 Jinan, Shandong, PR China.
  • 4 Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
  • 5 Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012 Jinan, Shandong, PR China. Electronic address: xinyongl@sdu.edu.cn.
Abstract

Guided by crystal structures of HIV-1 RT/DAPY complex and molecular modeling studies, a series of novel [1,2,4]triazolo[1,5-a]pyrimidine derivatives were rationally designed via structure-based core refining approach, synthesized through the readily accessible synthetic methods and evaluated for their anti-HIV activities in MT-4 cells. Preliminary biological evaluation indicated that most of the compounds exhibited marked inhibitory activity against the wild-type HIV-1 IIIB. Particularly, compound 7n was the most potent inhibitor against wild-type and K103N/Y181C double resistant mutant strain of HIV-1, possessing EC50 values of 0.02 μM and 7.6 μM, respectively, which were much better than or similar to nevirapine (NVP, EC50 = 0.15 μM, 2.9 μM) and delavirdine (DLV, EC50 = 0.07 μM, >36 μM). Besides, some Other compounds, 5b, 7c, 7e, 7f, and 7m, were also endowed with favorable anti-HIV-1 potency (EC50 = 0.07, 0.05, 0.05, 0.07, and 0.05 μM, respectively), which were better than or similar to those of NVP and DLV, suggesting a high potential to further develop this type of bridgehead nitrogen heterocycle as a novel class of NNRTIs with improved Antiviral efficacy and resistance profile. The selected compound, 7i, was found moderately inhibitory towards RT (IC50 = 0.39 μM), which was higher than for ETV (IC50 = 0.56 μM). Preliminary structure-activity relationships (SARs) and molecular modeling of these new analogues were detailed in this manuscript.

Keywords

Bridgehead nitrogen heterocycle; DAPY; Molecular modeling; Structure–activity relationships; [1,2,4]Triazolo[1,5-a]pyrimidine; anti-HIV activities.

Figures