1. Academic Validation
  2. Discovery and Preclinical Validation of [(11)C]AZ13153556, a Novel Probe for the Histamine Type 3 Receptor

Discovery and Preclinical Validation of [(11)C]AZ13153556, a Novel Probe for the Histamine Type 3 Receptor

  • ACS Chem Neurosci. 2016 Feb 17;7(2):177-84. doi: 10.1021/acschemneuro.5b00268.
Magnus Schou 1 Katarina Varnäs 2 Anders Jureus 3 Charlotte Ahlgren 3 Jonas Malmquist 3 Jenny Häggkvist 2 Lenke Tari 2 Steven S Wesolowski 4 Scott R Throner 5 Dean G Brown 5 Maria Nilsson 3 Peter Johnström 1 Sjoerd J Finnema 2 Ryuji Nakao 2 Nahid Amini 2 Akihiro Takano 2 Lars Farde 1
Affiliations

Affiliations

  • 1 AstraZeneca Translational Science Centre at Karolinska Institutet, PET Centre of Excellence, Department of Clinical Neuroscience, S-17176 Stockholm, Sweden.
  • 2 Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet , S-17176 Stockholm, Sweden.
  • 3 AstraZeneca, Research & Development, Innovative Medicines, S-151 85 Södertälje, Sweden.
  • 4 AstraZeneca, Research & Development, Innovative Medicines, Cambridge, Massachusetts 02451, United States.
  • 5 AstraZeneca, Research & Development, Innovative Medicines, Waltham, Massachusetts 02139, United States.
Abstract

The histamine type 3 receptor (H3) is a G protein-coupled receptor implicated in several disorders of the central nervous system. Herein, we describe the radiolabeling and preclinical evaluation of a candidate radioligand for the H3 receptor, 4-(1S,2S)-2-(4-cyclobutylpiperazine-1-carbonyl)cyclopropyl]-N-methyl-benzamide (5), and its comparison with one of the frontrunner radioligands for H3 imaging, namely, GSK189254 (1). Compounds 1 and 5 were radiolabeled with tritium and carbon-11 for in vitro and in vivo imaging experiments. The in vitro binding of [(3)H]1 and [(3)H]5 was examined by (i) saturation binding to rat and nonhuman primate brain tissue homogenate and (ii) in vitro autoradiography on tissue sections from rat, guinea pig, and human brain. The in vivo binding of [(11)C]1 and [(11)C]5 was examined by PET imaging in mice and nonhuman primates. Bmax values obtained from Scatchard analysis of [(3)H]1 and [(3)H]5 binding were in good agreement. Autoradiography with [(3)H]5 on rat, guinea pig, and human brain slices showed specific binding in regions known to be enhanced in H3 receptors, a high degree of colocalization with [(3)H]1, and virtually negligible nonspecific binding in tissue. PET measurements in mice and nonhuman primates demonstrated that [(11)C]5 binds specifically and reversibly to H3 receptors in vivo with low nonspecific binding in brain tissue. Whereas [(11)C]1 showed similar binding characteristics in vivo, the binding kinetics appeared faster for [(11)C]5 than for [(11)C]1.

Conclusions: [(11)C]5 has suitable properties for quantification of H3 receptors in nonhuman primate brain and has the potential to offer improved binding kinetics in man compared to [(11)C]1.

Keywords

PET; carbon-11; histamine; imaging; radioligand; receptor.

Figures
Products