1. Academic Validation
  2. UV Damage-Induced Phosphorylation of HBO1 Triggers CRL4DDB2-Mediated Degradation To Regulate Cell Proliferation

UV Damage-Induced Phosphorylation of HBO1 Triggers CRL4DDB2-Mediated Degradation To Regulate Cell Proliferation

  • Mol Cell Biol. 2015 Nov 16;36(3):394-406. doi: 10.1128/MCB.00809-15.
Ryoichi Matsunuma 1 Hiroyuki Niida 2 Tatsuya Ohhata 3 Kyoko Kitagawa 3 Satoshi Sakai 3 Chiharu Uchida 4 Bunsyo Shiotani 5 Masaki Matsumoto 6 Keiichi I Nakayama 6 Hiroyuki Ogura 7 Norihiko Shiiya 7 Masatoshi Kitagawa 3
Affiliations

Affiliations

  • 1 Department of Molecular Biology, Hamamatsu University School of Medicine, Shizuoka, Japan First Department of Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan.
  • 2 Department of Molecular Biology, Hamamatsu University School of Medicine, Shizuoka, Japan niidah@hama-med.ac.jp.
  • 3 Department of Molecular Biology, Hamamatsu University School of Medicine, Shizuoka, Japan.
  • 4 Department of Molecular Biology, Hamamatsu University School of Medicine, Shizuoka, Japan Research Equipment Center, Hamamatsu University School of Medicine, Shizuoka, Japan.
  • 5 Department of Cellular and Molecular Biology, Hiroshima University, Hiroshima, Japan.
  • 6 Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
  • 7 First Department of Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan.
Abstract

Histone Acetyltransferase binding to ORC-1 (HBO1) is a critically important Histone Acetyltransferase for forming the prereplicative complex (pre-RC) at the replication origin. Pre-RC formation is completed by loading of the MCM2-7 heterohexameric complex, which functions as a helicase in DNA replication. HBO1 recruited to the replication origin by CDT1 acetylates histone H4 to relax the chromatin conformation and facilitates loading of the MCM complex onto replication origins. However, the acetylation status and mechanism of regulation of histone H3 at replication origins remain elusive. HBO1 positively regulates cell proliferation under normal cell growth conditions. Whether HBO1 regulates proliferation in response to DNA damage is poorly understood. In this study, we demonstrated that HBO1 was degraded after DNA damage to suppress cell proliferation. Ser50 and Ser53 of HBO1 were phosphorylated in an ATM/ATR DNA damage sensor-dependent manner after UV treatment. ATM/ATR-dependently phosphorylated HBO1 preferentially interacted with DDB2 and was ubiquitylated by CRL4(DDB2). Replacement of endogenous HBO1 in Ser50/53Ala mutants maintained acetylation of histone H3K14 and impaired cell cycle regulation in response to UV irradiation. Our findings demonstrate that HBO1 is one of the targets in the DNA damage checkpoint. These results show that ubiquitin-dependent control of the HBO1 protein contributes to cell survival during UV irradiation.

Figures
Products
  • Cat. No.
    Product Name
    Description
    Target
    Research Area
  • HY-14731
    99.67%, ATR Inhibitor