1. Academic Validation
  2. Trace Amine-Associated Receptor 1 Regulates Wakefulness and EEG Spectral Composition

Trace Amine-Associated Receptor 1 Regulates Wakefulness and EEG Spectral Composition

  • Neuropsychopharmacology. 2017 May;42(6):1305-1314. doi: 10.1038/npp.2016.216.
Michael D Schwartz 1 Sarah W Black 1 Simon P Fisher 1 Jeremiah B Palmerston 1 Stephen R Morairty 1 Marius C Hoener 2 Thomas S Kilduff 1
Affiliations

Affiliations

  • 1 Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, USA.
  • 2 Neuroscience, Ophthalmology and Rare Diseases DTA, pRED, Roche Innovation Center Basel, F Hoffmann-La Roche, Basel, Switzerland.
Abstract

Trace amine-associated receptor 1 (TAAR1) agonists have been shown to have procognitive, antipsychotic-like, anxiolytic, weight-reducing, glucose-lowering, and wake-promoting activities. We used Taar1 knockout (KO) and overexpressing (OE) mice and TAAR1 agonists to elucidate the role of TAAR1 in sleep/wake. EEG, EMG, body temperature (Tb), and locomotor activity (LMA) were recorded in Taar1 KO, OE, and WT mice. Following a 24 h recording to characterize basal sleep/wake parameters, mice were sleep deprived (SD) for 6 h. In another experiment, mice were given three doses of the TAAR1 partial agonist RO5263397, caffeine, or vehicle p.o. Baseline wakefulness was modestly increased in OE compared with WT mice. Baseline theta (4.5-9 Hz) and low gamma (30-60 Hz) activity was elevated in KO compared with OE mice in NREM and REM sleep. Following SD, both KO and OE mice exhibited a homeostatic sleep rebound. In WT mice, RO5263397 increased waking and reduced NREM and REM sleep, decreased gamma power during wake and NREM, and decreased Tb without affecting LMA; these effects were absent in KO mice and potentiated in OE mice. In contrast, caffeine increased wake time, NREM gamma power, and LMA in all strains compared with vehicle; this effect was attenuated in KO and potentiated in OE mice. TAAR1 overexpression modestly increases wakefulness, whereas TAAR1 partial agonism increases wakefulness and also reduces NREM and also REM sleep. These results indicate a modulatory role for TAAR1 in sleep/wake and cortical activity and suggest TAAR1 as a novel target for wake-promoting therapeutics.

Figures
Products