1. Academic Validation
  2. Comparison of eight 15-lipoxygenase (LO) inhibitors on the biosynthesis of 15-LO metabolites by human neutrophils and eosinophils

Comparison of eight 15-lipoxygenase (LO) inhibitors on the biosynthesis of 15-LO metabolites by human neutrophils and eosinophils

  • PLoS One. 2018 Aug 17;13(8):e0202424. doi: 10.1371/journal.pone.0202424.
Anne-Sophie Archambault 1 Caroline Turcotte 1 Cyril Martin 1 Véronique Provost 1 Marie-Chantal Larose 1 Catherine Laprise 2 Jamila Chakir 1 Élyse Bissonnette 1 Michel Laviolette 1 Ynuk Bossé 1 Nicolas Flamand 1
Affiliations

Affiliations

  • 1 Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada.
  • 2 Centre intégré universitaire de santé et services sociaux du Saguenay-Lac-Saint-Jean, Département de sciences fondamentales, Université du Québec à Chicoutimi, Saguenay, QC, Canada.
Abstract

Neutrophils and eosinophils are important sources of bioactive lipids from the 5- and the 15-lipoxygenase (LO) pathways. Herein, we compared the effectiveness of humans eosinophils and eosinophil-depleted neutrophils to synthesize 15-LO metabolites using a cocktail of different 15-LO substrates as well as their sensitivities to eight documented 15-lipoxygenase inhibitors. The treatment of neutrophils and eosinophils with linoleic acid, dihomo-γ-linolenic acid, arachidonic acid, eicosapentaenoic acid, docosahexaenoic acid and arachidonyl-ethanolamide, led to the synthesis of 13-HODE, 15-HETrE, 15-HETE, 15-HEPE, 14-HDHA/17-HDHA, and 15-hydroxy-AEA. Neutrophils and eosinophils also metabolized the endocannabinoid 2-arachidonoyl-glycerol into 15-HETE-glycerol, although this required 2-arachidonoyl-glycerol hydrolysis inhibition. Neutrophils and eosinophils differed in regard to dihomo-γ-linolenic acid and linoleic acid utilization with 15-HETrE/13-HODE ratios of 0.014 ± 0.0008 and 0.474 ± 0.114 for neutrophils and eosinophils respectively. 15-LO metabolite synthesis by neutrophils and eosinophils also differed in regard to their relative production of 17-HDHA and 14-HDHA.The synthesis of 15-LO metabolites by neutrophils was concentration-dependent and rapid, reaching a plateau after one minute. While investigating the biosynthetic routes involved, we found that eosinophil-depleted neutrophils express the 15-lipoxygenase-2 but not the 15-LO-1, in contrast to eosinophils which express the 15-LO-1 but not the 15-LO-2. Moreover, 15-LO metabolite synthesis by neutrophils was not inhibited by the 15-LO-1 inhibitors BLX769, BLX3887, and ML351. However, 15-LO product synthesis was partially inhibited by 100 μM NDGA. Altogether, our data indicate that the best 15-LO-1 inhibitors in eosinophils are BLX3887, BLX769, NDGA and ML351 and that the synthesis of 15-LO metabolites by neutrophils does not involve the 15-LO-1 nor the phosphorylation of 5-LO on Ser-663 but is rather the consequence of 15-LO-2 or another unidentified 15-LO.

Figures
Products