1. Academic Validation
  2. Omeprazole prevents CDX2 and SOX9 expression by inhibiting hedgehog signaling in Barrett's esophagus cells

Omeprazole prevents CDX2 and SOX9 expression by inhibiting hedgehog signaling in Barrett's esophagus cells

  • Clin Sci (Lond). 2019 Feb 12;133(3):483-495. doi: 10.1042/CS20180828.
Jiao Huang 1 Hua Liu 1 Tiantian Sun 1 Jing-Yuan Fang 1 Jilin Wang 2 Hua Xiong 2
Affiliations

Affiliations

  • 1 State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China.
  • 2 State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China wangjilin811123@163.com huaxiong1979@163.com.
Abstract

Activation of Hedgehog (Hh) signaling contributes to the progression of Barrett's esophagus (BE), which increases the risk of esophageal adenocarcinoma. Recent clinical studies revealed that proton-pump inhibitors (PPIs) but not H2 receptor antagonists (H2RAs) were associated with a decreased risk of esophageal adenocarcinoma. We would like to know whether PPIs interfere with BE progression during BE treatment. Here, we explored the role of omeprazole on Hh signaling and expression of two crucial biomarkers of BE, SOX9 and CDX2. We demonstrated that bile acids elevated expression of Hh pathway target genes, such as GLI1 and PTCH1, and induced SOX9 and CDX2 up-regulation in both CP-A and CP-B cells. Omeprazole, but not famotidine, down-regulated these genes induced by bile acids. In addition, omeprazole-induced down-regulation of SOX9 and CDX2 was mediated by Hh signaling. To explore the mechanisms by which omeprazole inhibits Hh signaling, we performed luciferase assay but did not find any effects of omeprazole on the activity of GLI1 promoter, the critical transcription factor of Hh signaling. Therefore, we used miRNA Sequencing and a bioinformatics tool in our study to identify the differently expressed miRNAs in BE organoids treated with or without omeprazole, and we identified miR-2116-3p was involved in omeprazole-mediated inhibition of Hh signaling and subsequent down-regulation of SOX9 and CDX2. Collectively, our data indicate omeprazole inhibits Hh signaling and subsequent SOX9 and CDX2 expression via up-regulating miR-2116-3p. We have demonstrated a novel acid-independent mechanism of omeprazole that might yield valuable insight into clinical management of BE progression, irrespective of acid reflux symptoms.

Keywords

BE progression; CDX2; Hedgehog signaling; PPIs; SOX9.

Figures
Products