1. Academic Validation
  2. Supported Catalytically Active Supramolecular Hydrogels for Continuous Flow Chemistry

Supported Catalytically Active Supramolecular Hydrogels for Continuous Flow Chemistry

  • Angew Chem Int Ed Engl. 2019 Dec 19;58(52):18817-18822. doi: 10.1002/anie.201909424.
Jennifer Rodon Fores 1 Miryam Criado-Gonzalez 1 2 3 Alain Chaumont 4 Alain Carvalho 1 Christian Blanck 1 Marc Schmutz 1 Christophe A Serra 1 F Boulmedais 1 Pierre Schaaf 1 2 3 Loïc Jierry 1
Affiliations

Affiliations

  • 1 Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, BP 84047, 67034, Strasbourg Cedex 2, France.
  • 2 Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, 11 rue Humann, 67085, Strasbourg Cedex, France.
  • 3 Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France.
  • 4 Université de Strasbourg, Faculté de Chimie, UMR7140, 1 rue Blaise Pascal, 67008, Strasbourg Cedex, France.
Abstract

Inspired by biology, one current goal in supramolecular chemistry is to control the emergence of new functionalities arising from the self-assembly of molecules. In particular, some Peptides can self-assemble and generate exceptionally catalytically active fibrous networks able to underpin hydrogels. Unfortunately, the mechanical fragility of these Materials is incompatible with process developments, relaying this exciting field to academic curiosity. Here, we show that this drawback can be circumvented by enzyme-assisted self-assembly of Peptides initiated at the walls of a supporting porous material. We applied this strategy to grow an esterase-like catalytically active supramolecular hydrogel (CASH) in an open-cell polymer foam, filling the whole interior space. Our supported CASH material is highly efficient towards inactivated esters and enables the kinetic resolution of racemates. This hybrid material is robust enough to be used in continuous flow reactors, and is reusable and stable over months.

Keywords

hydrogels; kinetic resolution; organocatalysis; self-assembly; supported catalysis.

Figures
Products