1. Academic Validation
  2. Antidepressant-like Effect of 1-(2-(4-(4-Ethylphenyl)-1 H-1,2,3-triazol-1-yl)phenyl)ethan-1-one in Mice: Evidence of the Contribution of the Serotonergic System

Antidepressant-like Effect of 1-(2-(4-(4-Ethylphenyl)-1 H-1,2,3-triazol-1-yl)phenyl)ethan-1-one in Mice: Evidence of the Contribution of the Serotonergic System

  • ACS Chem Neurosci. 2023 Jun 21;14(12):2333-2346. doi: 10.1021/acschemneuro.3c00108.
Marcelo Heinemann Presa 1 Marcia Juciele da Rocha 1 Camila Simões Pires 1 Kauane Nayara Bahr Ledebuhr 1 Gabriel Pereira da Costa 2 Diego Alves 2 Cristiani Folharini Bortolatto 1 César Augusto Brüning 1
Affiliations

Affiliations

  • 1 Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), P.O. Box 354, 96010-900 Pelotas, Rio Grande do Sul, Brazil.
  • 2 Laboratory of Clean Organic Synthesis (LASOL), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), P.O. Box 354, 96010-900 Pelotas, Rio Grande do Sul, Brazil.
Abstract

Major depressive disorder (MDD) is a psychiatric disorder that affects a large portion of the population, with dysregulation of the serotonergic system, which is deeply involved in both the pathophysiology of MDD and mechanism of action of many antidepressants. Current pharmacological therapies do not meet the neurobiological needs of all depressed individuals, making the development of new antidepressants necessary. In recent decades, compounds containing triazoles have become promising due to their range of biological activities, including antidepressant activity. In this study, we evaluated the antidepressant-like effect of a hybrid containing triazole and acetophenone, 1-(2-(4-(4-ethylphenyl)-1H-1,2,3-triazol-1-yl)phenyl)ethan-1-one (ETAP) (0.5-5 mg/kg), in the forced swimming test (FST) and tail suspension test (TST) in mice, as well as the involvement of the serotonergic system in this effect. Our findings demonstrated that ETAP exhibited an antidepressant-like effect from the dose of 1 mg/kg and that this effect is modulated by 5-HT2A/2C and 5-HT4 receptors. We also demonstrated that this effect may be related to inhibition of Monoamine Oxidase A activity in the hippocampus. Additionally, we evaluated the in silico pharmacokinetic profile of ETAP, which predicted its penetration into the central nervous system. ETAP exhibited a low potential for toxicity at a high dose, making this molecule interesting for the development of a new therapeutic strategy for MDD.

Keywords

acetophenone; antidepressant; major depressive disorder; mice; serotonin; triazol.

Figures
Products