1. Academic Validation
  2. Retinal cell-targeted liposomal ginsenoside Rg3 attenuates retinal ischemia-reperfusion injury via alleviating oxidative stress and promoting microglia/macrophage M2 polarization

Retinal cell-targeted liposomal ginsenoside Rg3 attenuates retinal ischemia-reperfusion injury via alleviating oxidative stress and promoting microglia/macrophage M2 polarization

  • Free Radic Biol Med. 2023 Jun 26;S0891-5849(23)00510-5. doi: 10.1016/j.freeradbiomed.2023.06.024.
Yanmei Huang 1 Jing Lu 1 Laien Zhao 1 Xiaoxuan Fu 1 Shengjun Peng 1 Wen Zhang 1 Rong Wang 1 Wenze Yuan 1 Rongrui Luo 1 Xiaojie Wang 1 Zelin Li 1 Zhuhong Zhang 2
Affiliations

Affiliations

  • 1 School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China.
  • 2 School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China. Electronic address: zhzhang0608@ytu.edu.cn.
Abstract

Retinal ischemia-reperfusion (RIR) injury remains a major challenge that is detrimental to retinal cell survival in a variety of ocular diseases. However, current clinical treatments focus on a single pathological mechanism, making them unable to provide comprehensive retinal protection. A variety of Natural Products including ginsenoside Rg3 (Rg3) exhibit potent antioxidant and anti-inflammatory activities. Unfortunately, the hydrophobicity of Rg3 and the presence of various intraocular barriers limit its effective application in clinical settings. Hyaluronic acid (HA)- specifically binds to cell surface receptors, CD44, which is widely expressed in retinal pigment epithelial cells and M1-type macrophage. Here, we developed HA-decorated liposomes loaded with Rg3, termed Rg3@HA-Lips, to protect against retinal damage caused by RIR injury. Treatment with Rg3@HA-Lips significantly inhibited the oxidative stress induced by RIR injury. In addition, Rg3@HA-Lips promoted the transition of M1-type macrophage to the M2 type, ultimately reversing the pro-inflammatory microenvironment. The mechanism of Rg3@HA-Lips was further investigated and found that they can inhibit SIRT1/FOXO3a and NF-κB/STAT3 signaling pathways. Together with as well demonstrated good safety profiles, this CD44-targeted platform loaded with a natural product alleviates RIR injury by modulating the retinal microenvironment and present a potential clinical treatment strategy.

Keywords

Anti-inflammatory therapy; Ginsenoside Rg3; M1/M2 re-polarization; Oxidative stress; RIR injury.

Figures
Products