1. Academic Validation
  2. Single-cell functional genomics reveals determinants of sensitivity and resistance to natural killer cells in blood cancers

Single-cell functional genomics reveals determinants of sensitivity and resistance to natural killer cells in blood cancers

  • Immunity. 2023 Dec 12;56(12):2816-2835.e13. doi: 10.1016/j.immuni.2023.11.008.
Olli Dufva 1 Sara Gandolfi 2 Jani Huuhtanen 3 Olga Dashevsky 4 Hanna Duàn 1 Khalid Saeed 5 Jay Klievink 1 Petra Nygren 1 Jonas Bouhlal 1 Jenni Lahtela 6 Anna Näätänen 6 Bishwa R Ghimire 6 Tiina Hannunen 6 Pekka Ellonen 6 Hanna Lähteenmäki 5 Pauliina Rumm 5 Jason Theodoropoulos 5 Essi Laajala 1 Jouni Härkönen 7 Petri Pölönen 8 Merja Heinäniemi 7 Maija Hollmén 9 Shizuka Yamano 4 Ryosuke Shirasaki 4 David A Barbie 4 Jennifer A Roth 10 Rizwan Romee 11 Michal Sheffer 4 Harri Lähdesmäki 12 Dean A Lee 13 Ricardo De Matos Simoes 4 Matti Kankainen 14 Constantine S Mitsiades 15 Satu Mustjoki 16
Affiliations

Affiliations

  • 1 Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland.
  • 2 Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
  • 3 Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland; Department of Computer Science, Aalto University, 02150 Espoo, Finland.
  • 4 Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA.
  • 5 Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland.
  • 6 Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland.
  • 7 Faculty of Health Sciences, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland.
  • 8 Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
  • 9 Medicity Research Laboratory, University of Turku, 20014 Turku, Finland.
  • 10 Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
  • 11 Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA.
  • 12 Department of Computer Science, Aalto University, 02150 Espoo, Finland.
  • 13 Hematology/Oncology/BMT, Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, OH 43205, USA.
  • 14 Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland; Laboratory of Genetics, HUS Diagnostic Center, Hospital District of Helsinki and Uusima (HUS), 00290 Helsinki, Finland.
  • 15 Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA. Electronic address: constantine_mitsiades@dfci.harvard.edu.
  • 16 Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland. Electronic address: satu.mustjoki@helsinki.fi.
Abstract

Cancer cells can evade natural killer (NK) cell activity, thereby limiting anti-tumor immunity. To reveal genetic determinants of susceptibility to NK cell activity, we examined interacting NK cells and blood Cancer cells using single-cell and genome-scale functional genomics screens. Interaction of NK and Cancer cells induced distinct activation and type I interferon (IFN) states in both cell types depending on the Cancer cell lineage and molecular phenotype, ranging from more sensitive myeloid to less sensitive B-lymphoid cancers. CRISPR screens in Cancer cells uncovered genes regulating sensitivity and resistance to NK cell-mediated killing, including adhesion-related glycoproteins, protein fucosylation genes, and transcriptional regulators, in addition to confirming the importance of antigen presentation and death receptor signaling pathways. CRISPR screens with a single-cell transcriptomic readout provided insight into underlying mechanisms, including regulation of IFN-γ signaling in Cancer cells and NK cell activation states. Our findings highlight the diversity of mechanisms influencing NK cell susceptibility across different cancers and provide a resource for NK cell-based therapies.

Keywords

CRISPR screening; CROP-seq; NK cell; cancer; functional genomics; immunotherapy resistance; leukemia; lymphoma; myeloma; single-cell RNA sequencing.

Figures
Products