1. Academic Validation
  2. In vitro interaction of naphthoquine with ivermectin, atovaquone, curcumin, and ketotifen in the asexual blood stage of Plasmodium falciparum 3D7

In vitro interaction of naphthoquine with ivermectin, atovaquone, curcumin, and ketotifen in the asexual blood stage of Plasmodium falciparum 3D7

  • Microbiol Spectr. 2024 May 23:e0063024. doi: 10.1128/spectrum.00630-24.
Ruotong Liu # 1 2 Guoming Li # 1 2 Mei Li # 1 2 Baogang Wang 2 Dongna Zhang 2 Likun Xu 2 Liangliang Zhao 2 Ruhe Liao 1 2 Qin Xu 1 Zhu-Chun Bei 2 Yabin Song 2
Affiliations

Affiliations

  • 1 Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
  • 2 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
  • # Contributed equally.
Abstract

Naphthoquine is a promising candidate for antimalarial combination therapy. Its combination with artemisinin has demonstrated excellent efficacy in clinical trials conducted across various malaria-endemic areas. A co-formulated combination of naphthoquine and azithromycin has also shown high clinical efficacy for malaria prophylaxis in Southeast Asia. Developing new combination therapies using naphthoquine will provide additional arsenal responses to the growing threat of artemisinin resistance. Furthermore, due to its long half-life, the possible interaction of naphthoquine with other drugs also needs attention. However, studies on its pharmacodynamic interactions with other drugs are still limited. In this study, the in vitro interactions of naphthoquine with ivermectin, atovaquone, curcumin, and ketotifen were evaluated in the asexual stage of Plasmodium falciparum 3D7. By using the combination index analysis and the SYBR Green I-based fluorescence assay, different interaction patterns of selected drugs with naphthoquine were revealed. Curcumin showed a slight but significant synergistic interaction with naphthoquine at lower effect levels, and no antagonism was observed across the full range of effect levels for all tested ratios. Atovaquone showed a potency decline when combined with naphthoquine. For ivermectin, a significant antagonism with naphthoquine was observed at a broad range of effect levels below 75% inhibition, although no significant interaction was observed at higher effect levels. Ketotifen interacted with naphthoquine similar to ivermectin, but significant antagonism was observed for only one tested ratio. These findings should be helpful to the development of new naphthoquine-based combination therapy and the clinically reasonable application of naphthoquine-containing therapies.

Importance: Pharmacodynamic interaction between antimalarials is not only crucial for the development of new antimalarial combination therapies but also important for the appropriate clinical use of antimalarials. The significant synergism between curcumin and naphthoquine observed in this study suggests the potential value for further development of new antimalarial combination therapy. The finding of a decline in atovaquone potency in the presence of naphthoquine alerts to a possible risk of treatment or prophylaxis failure for atovaquone-proguanil following naphthoquine-containing therapies. The observation of antagonism between naphthoquine and ivermectin raised a need for concern about the applicability of naphthoquine-containing therapy in malaria-endemic areas with ivermectin mass drug administration deployed. Considering the role of atovaquone-proguanil as a major alternative when first-line artemisinin-based combination therapy is ineffective and the wide implementation of ivermectin mass drug administration in malaria-endemic countries, the above findings will be important for the appropriate clinical application of antimalarials involving naphthoquine-containing therapies.

Keywords

Plasmodium falciparum; antimalarial drugs; drug interactions; malaria; pharmacodynamics.

Figures
Products