1. Academic Validation
  2. Binding of Griffonia simplicifolia I lectin to rat pulmonary alveolar macrophages and its use in purifying type II alveolar epithelial cells

Binding of Griffonia simplicifolia I lectin to rat pulmonary alveolar macrophages and its use in purifying type II alveolar epithelial cells

  • Biochim Biophys Acta. 1986 Jan 23;885(1):34-42. doi: 10.1016/0167-4889(86)90035-2.
R H Simon J P McCoy Jr A E Chu P D Dehart I J Goldstein
Abstract

We report that the isolectin Griffonia simplicifolia I-B4 isolated from G. simplicifolia seeds binds to rat alveolar macrophages present in frozen sections of lung tissue or bronchoalveolar lavage fluid. G. simplicifolia I-B4 does not bind to alveolar epithelial cells. We established that G. simplicifolia I-B4 binds to the macrophages via interaction with terminal alpha-D-galactopyranosyl residues present on these cells. This was substantiated by demonstrating that binding is inhibited either by the haptenic sugar alpha-D-galactopyranoside or by treating the cells with coffee bean alpha-galactosidase. Because murine laminin is known to contain terminal alpha-D-galactopyranosyl end-groups, and because we found that an anti-laminin antiserum binds to rat alveolar macrophages, we suspect that G. simplicifolia I-B4 may be binding to laminin present on the macrophages. To isolate alveolar type II epithelial cells from rat lungs, we developed a method that utilizes the lectin G. simplicifolia I. When proteinase-derived suspensions of pulmonary cells are incubated with G. simplicifolia I, the macrophages agglutinate and can be removed by filtration through nylon mesh. After incubating the resulting cellular suspension in tissue culture, the adherent cells are 94 +/- 2% (S.D.) type II cells. When compared to cells isolated by repeated differential adherence, the lectin-prepared type II cells have similar morphology and staining characteristics, form domes in monolayers and incorporate similar amounts of palmitate into disaturated phosphatidylcholine. We believe that the procedure outlined in this report provides a simple and effective method to isolate type II alveolar epithelial cells from rat lungs.

Figures
Products