1. Academic Validation
  2. The pharmacokinetics of cimetidine and its sulphoxide metabolite in patients with normal and impaired renal function

The pharmacokinetics of cimetidine and its sulphoxide metabolite in patients with normal and impaired renal function

  • Br J Clin Pharmacol. 1982 Feb;13(2):163-70. doi: 10.1111/j.1365-2125.1982.tb01351.x.
R Larsson P Erlanson G Bodemar A Walan A Bertler L Fransson B Norlander
Abstract

1 The pharmacokinetics of cimetidine and its sulphoxide metabolite was studied after a single intravenous dose of 200 mg cimetidine in nine patients with normal renal function and ten patients with severe renal failure on regular haemodialysis and during continuous oral cimetidine treatment in ten patients with normal renal function and 31 patients with different degrees of renal failure. 2 In normal renal function a mean of 47.3% of the single intravenous dose was excreted as unchanged drug and 12.8% as cimetidine sulphoxide. The mean plasma elimination half-life (T1/2) of cimetidine was 2.0 h and of cimetidine sulphoxide 1.7 h. 3 In severe renal failure a mean of 2.2% of the single intravenous dose was excreted as unchanged drug and 0.5% as cimetidine sulphoxide. The mean plasma T1/2 of cimetidine was 3.9 h. The plasma concentrations of the sulphoxide metabolite increased successively with time after dosing and no elimination phase was observed still 9 h after dose. The mean non-renal clearance of cimetidine was 210 ml/min and lower than in normal renal function, suggesting decreased metabolism of cimetidine in uraemia. 4 During continuous oral cimetidine treatment in patients with normal renal function and in patients g and no elimination phase was observed still 9 h after dose. The mean non-renal clearance of cimetidine was 210 ml/min and lower than in normal renal function, suggesting decreased metabolism of cimetidine in uraemia. 4 During continuous oral cimetidine treatment in patients with normal renal function and in patients g and no elimination phase was observed still 9 h after dose. The mean non-renal clearance of cimetidine was 210 ml/min and lower than in normal renal function, suggesting decreased metabolism of cimetidine in uraemia. 4 During continuous oral cimetidine treatment in patients with normal renal function and in patients with different degrees of renal failure given reduced doses of cimetidine the plasma concentrations of the sulphoxide metabolite were higher with decreasing renal function. The mean plasma T1/2 of cimetidine was 3.1 h in mild renal dysfunction (creatinine clearance 50-75 ml/min) and 4.5 h in severe renal failure (creatinine clearance 5-15 ml/min) and of cimetidine sulphoxide 5.3 and 14.4 h respectively. 5 Toxicity studies of cimetidine sulphoxide may be needed to assess if high plasma concentrations of the sulphoxide metabolite in severe renal failure are of clinical significance.

Figures
Products