1. Signaling Pathways
  2. PI3K/Akt/mTOR
  3. PI3K
  4. PI3Kα Isoform

PI3Kα

 

PI3Kα Related Products (175):

Cat. No. Product Name Effect Purity
  • HY-10108
    LY294002
    Inhibitor 99.95%
    LY294002 is a broad-spectrum inhibitor of PI3K with IC50s of 0.5, 0.57, and 0.97 μM for PI3Kα, PI3Kδ and PI3Kβ, respectively. LY294002 also inhibits CK2 with an IC50 of 98 nM. LY294002 is a competitive DNA-PK inhibitor that binds reversibly to the kinase domain of DNA-PK with an IC50 of 1.4?μM. LY294002 is an apoptosis activator.
  • HY-15244
    Alpelisib
    Inhibitor 99.95%
    Alpelisib (BYL-719) is a potent, selective, and orally active PI3Kα inhibitor. Alpelisib (BYL-719) shows efficacy in targeting PIK3CA-mutated cancer. Alpelisib (BYL-719) also inhibits p110α/p110γ/p110δ/p110β with IC50s of 5/250/290/1200 nM, respectively. Antineoplastic activity.
  • HY-13026
    Idelalisib
    Inhibitor 99.78%
    Idelalisib (CAL-101; GS-1101) is a highly selective and orally bioavailable p110δ inhibitor with an IC50 of 2.5 nM, showing 40- to 300-fold selectivity for p110δ over other PI3K class I enzymes.
  • HY-50094
    Pictilisib
    Inhibitor 99.80%
    Pictilisib (GDC-0941) is a potent inhibitor of PI3Kα with an IC50 of 3 nM, with modest selectivity against p110β (11-fold) and p110γ (25-fold).
  • HY-101562
    Inavolisib
    Inhibitor 99.96%
    Inavolisib (GDC-0077) is a potent, orally active, and selective PI3Kα inhibitor (IC50=0.038 nM). Inavolisib exerts its activity by binding to the ATP binding site of PI3K, thereby inhibiting the phosphorylation of PIP2 to PIP3. Inavolisib is more selective for mutant versus wild-type PI3Kα. Inavolisib can be used for the study of breast cancer.
  • HY-162713
    MTX-531
    Inhibitor 99.87%
    MTX-531 is an oral drug that inhibits EGFR (with an IC50 of 14.7 nM) and PI3K (with IC50 values of 6.4, 233, 8.3, and 1.1 nM for PI3Kα, PI3Kβ, PI3Kγ, and PI3Kδ respectively), and it has anti-tumor effects. MTX-531 also acts as a weak agonist of PPARγ, with an IC50 of 2.5 µM, helping to alleviate hyperglycemia induced by PI3K inhibitors.
  • HY-108958
    (Rac)-AZD8186
    Inhibitor
    Rac)-AZD8186 is the racemate of AZD8186 (HY-12330), a PI3K inhibitor that inhibits PI3Kβ (IC50=4 nM), PI3Kδ (IC50=12 nM), PI3Kα (IC50=35 nM) and PI3Kγ (IC50=675 nM).
  • HY-169019
    XJTU-L453
    Inhibitor
    XJTU-L453 is a PI3Kα inhibitor with an IC50 value of 0.4 nM. XJTU-L453 can inhibit the proliferation of breast cancer cell lines T47D and MCF7, with IC50 values of 0.2 μM and 0.5 μM, respectively. XJTU-L453 can inhibit the PI3K pathway, induce cell cycle arrest, and trigger cell apoptosis (apoptosis). XJTU-L453 also has antitumor activity in MCF7 xenograft mice.
  • HY-70063
    Buparlisib
    Inhibitor 99.90%
    Buparlisib (BKM120; NVP-BKM120) is a pan-class I PI3K inhibitor, with IC50s of 52, 166, 116 and 262 nM for p110α, p110β, p110δ and p110γ, respectively.
  • HY-15346
    Copanlisib
    Inhibitor 99.50%
    Copanlisib (BAY 80-6946) is a potent, selective and ATP-competitive pan-class I PI3K inhibitor, with IC50s of 0.5 nM, 0.7 nM, 3.7 nM and 6.4 nM for PI3Kα, PI3Kδ, PI3Kβ and PI3Kγ, respectively. Copanlisib has more than 2,000-fold selectivity against other lipid and protein kinases, except for mTOR. Copanlisib has superior antitumor activity.
  • HY-50673
    Dactolisib
    Inhibitor 99.94%
    Dactolisib (BEZ235) is an orally active and dual pan-class I PI3K and mTOR kinase inhibitor with IC50s of 4 nM/5 nM/7 nM/75 nM, and 20.7 nM for p110α/p110γ/p110δ/p110β and mTOR, respectively. Dactolisib (BEZ235) inhibits both mTORC1 and mTORC2.
  • HY-17044
    Duvelisib
    Inhibitor 99.88%
    Duvelisib (IPI-145) is a selectivite p100δ inhibitor with IC50 of 2.5 nM, 27.4 nM, 85 nM and 1602 nM for p110δ, P110γ, p110β and p110α, respectively.
  • HY-100716
    Eganelisib
    Inhibitor 99.68%
    Eganelisib (IPI549) is a potent and selective PI3Kγ inhibitor with an IC50 of 16 nM. Eganelisib shows >100-fold selectivity over other lipid and protein kinases.
  • HY-10115
    PI-103
    Inhibitor 98.93%
    PI-103 is a potent PI3K and mTOR inhibitor with IC50s of 8 nM, 88 nM, 48 nM, 150 nM, 20 nM, and 83 nM for p110α, p110β, p110δ, p110γ, mTORC1, and mTORC2. PI-103 also inhibits DNA-PK with an IC50 of 2 nM. PI-103 induces autophagy.
  • HY-13228
    YM-201636
    Inhibitor 98.05%
    YM-201636 is a potent and selective PIKfyve inhibitor with an IC50 of 33 nM. YM-201636 also inhibits p110α with an IC50 of 3.3 μM. YM-201636 inhibits retroviral replication.
  • HY-10297
    Omipalisib
    Inhibitor 99.93%
    Omipalisib (GSK2126458) is an orally active and highly selective inhibitor of PI3K with Kis of 0.019 nM/0.13 nM/0.024 nM/0.06 nM and 0.18 nM/0.3 nM for p110α/β/δ/γ, mTORC1/2, respectively. Omipalisib has anti-cancer activity.
  • HY-15346A
    Copanlisib dihydrochloride
    Inhibitor 99.55%
    Copanlisib dihydrochloride (BAY 80-6946 dihydrochloride) is a potent, selective and ATP-competitive pan-class I PI3K inhibitor, with IC50s of 0.5 nM, 0.7 nM, 3.7 nM and 6.4 nM for PI3Kα, PI3Kδ, PI3Kβ and PI3Kγ, respectively. Copanlisib dihydrochloride has more than 2,000-fold selectivity against other lipid and protein kinases, except for mTOR. Copanlisib dihydrochloride has superior antitumor activity.
  • HY-13898
    Taselisib
    Inhibitor 99.75%
    Taselisib (GDC-0032) is a potent PI3K inhibitor targets PIK3CA mutations, with Kis of 0.12 nM, 0.29 nM, 0.97 nM, and 9.1 nM for PI3Kδ, PI3Kα, PI3Kγ and PI3Kβ, respectively.
  • HY-13522
    Fimepinostat
    Inhibitor 99.95%
    Fimepinostat (CUDC-907) potently inhibits class I PI3Ks as well as classes I and II HDAC enzymes with an IC50 of 19/54/39 nM and 1.7/5.0/1.8/2.8 nM for PI3Kα/PI3Kβ/PI3Kδ and HDAC1/HDAC2/HDAC3/HDAC10 , respectively.
  • HY-124719
    hSMG-1 inhibitor 11j
    Inhibitor 99.82%
    hSMG-1 inhibitor 11j, a pyrimidine derivative, is a potent and selective inhibitor of hSMG-1, with an IC50 of 0.11 nM. hSMG-1 inhibitor 11j exhibits >455-fold selectivity for hSMG-1 over mTOR (IC50=50 nM), PI3Kα (IC50=92/60 nM) and CDK1/CDK2 (IC50=32/7.1 μM). hSMG-1 inhibitor 11j can be used for the research of cancer.