1. Academic Validation
  2. Rofecoxib [Vioxx, MK-0966; 4-(4'-methylsulfonylphenyl)-3-phenyl-2-(5H)-furanone]: a potent and orally active cyclooxygenase-2 inhibitor. Pharmacological and biochemical profiles

Rofecoxib [Vioxx, MK-0966; 4-(4'-methylsulfonylphenyl)-3-phenyl-2-(5H)-furanone]: a potent and orally active cyclooxygenase-2 inhibitor. Pharmacological and biochemical profiles

  • J Pharmacol Exp Ther. 1999 Aug;290(2):551-60.
C C Chan 1 S Boyce C Brideau S Charleson W Cromlish D Ethier J Evans A W Ford-Hutchinson M J Forrest J Y Gauthier R Gordon M Gresser J Guay S Kargman B Kennedy Y Leblanc S Leger J Mancini G P O'Neill M Ouellet D Patrick M D Percival H Perrier P Prasit I Rodger, et al.
Affiliations

Affiliation

  • 1 Departments of Pharmacology, Biochemistry and Molecular Biology, and Medicinal Chemistry, Merck Frosst Centre for Therapeutic Research, Kirkland, Quebec, Canada. chi_chung_chan@merck.com
PMID: 10411562
Abstract

The discoveries that cyclooxygenase (COX)-2 is an inducible form of COX involved in inflammation and that COX-1 is the major isoform responsible for the production of prostaglandins (PGs) in the gastrointestinal tract have provided a rationale for the development of specific COX-2 inhibitors as a new class of anti-inflammatory agents with improved gastrointestinal tolerability. In the present study, the preclinical pharmacological and biochemical profiles of rofecoxib [Vioxx, also known as MK-0966, 4-(4'-methylsulfonylphenyl)-3-phenyl-2-(5H)-furanone], an orally active COX-2 Inhibitor, are described. Rofecoxib is a potent inhibitor of the COX-2-dependent production of PGE(2) in human osteosarcoma cells (IC(50) = 26 +/- 10 nM) and Chinese hamster ovary cells expressing human COX-2 (IC(50) = 18 +/- 7 nM) with a 1000-fold selectivity for the inhibition of COX-2 compared with the inhibition of COX-1 activity (IC(50) > 50 microM in U937 cells and IC(50) > 15 microM in Chinese hamster ovary cells expressing human COX-1). Rofecoxib is a time-dependent inhibitor of purified human recombinant COX-2 (IC(50) = 0.34 microM) but caused inhibition of purified human COX-1 in a non-time-dependent manner that could only be observed at a very low substrate concentration (IC(50) = 26 microM at 0.1 microM arachidonic acid concentration). In an in vitro human whole blood assay, rofecoxib selectively inhibited lipopolysaccharide-induced, COX-2-derived PGE(2) synthesis with an IC(50) value of 0.53 +/- 0.02 microM compared with an IC(50) value of 18.8 +/- 0.9 microM for the inhibition of COX-1-derived thromboxane B(2) synthesis after blood coagulation. Using the ratio of the COX-1 IC(50) values over the COX-2 IC(50) values in the human whole blood assay, selectivity ratios for the inhibition of COX-2 of 36, 6.6, 2, 3, and 0.4 were obtained for rofecoxib, celecoxib, meloxicam, diclofenac, and indomethacin, respectively. In several in vivo rodent models, rofecoxib is a potent inhibitor of carrageenan-induced paw edema (ID(50) = 1.5 mg/kg), carrageenan-induced paw hyperalgesia (ID(50) = 1.0 mg/kg), lipopolysaccharide-induced pyresis (ID(50) = 0.24 mg/kg), and adjuvant-induced arthritis (ID(50) = 0.74 mg/kg/day). Rofecoxib also has a protective effect on adjuvant-induced destruction of cartilage and bone structures in rats. In a (51)Cr excretion assay for detection of gastrointestinal integrity in either rats or squirrel monkeys, rofecoxib has no effect at doses up to 200 mg/kg/day for 5 days. Rofecoxib is a novel COX-2 Inhibitor with a biochemical and pharmacological profile clearly distinct from that of current nonsteroidal anti-inflammatory drugs and represents a new therapeutic class of anti-inflammatory agents for the treatment of the symptoms of osteoarthritis and rheumatoid arthritis with improved gastrointestinal tolerability.

Figures
Products