1. Academic Validation
  2. Resistance-modifying agents. 9. Synthesis and biological properties of benzimidazole inhibitors of the DNA repair enzyme poly(ADP-ribose) polymerase

Resistance-modifying agents. 9. Synthesis and biological properties of benzimidazole inhibitors of the DNA repair enzyme poly(ADP-ribose) polymerase

  • J Med Chem. 2000 Nov 2;43(22):4084-97. doi: 10.1021/jm000950v.
A W White 1 R Almassy A H Calvert N J Curtin R J Griffin Z Hostomsky K Maegley D R Newell S Srinivasan B T Golding
Affiliations

Affiliation

  • 1 Department of Chemistry, Bedson Building, The University, Newcastle upon Tyne NE1 7RU, UK.
Abstract

The nuclear Enzyme poly(ADP-ribose) polymerase (PARP) facilitates the repair of DNA strand breaks and is implicated in the resistance of Cancer cells to certain DNA-damaging agents. Inhibitors of PARP have clinical potential as resistance-modifying agents capable of potentiating radiotherapy and the cytotoxicity of some forms of Cancer chemotherapy. The preclinical development of 2-aryl-1H-benzimidazole-4-carboxamides as resistance-modifying agents in Cancer chemotherapy is described. 1H-Benzimidazole-4-carboxamides, particularly 2-aryl derivatives, are identified as a class of potent PARP inhibitors. Derivatives of 2-phenyl-1H-benzimidazole-4-carboxamide (23, K(i) = 15 nM), in which the phenyl ring contains substituents, have been synthesized. Many of these derivatives exhibit K(i) values for PARP inhibition < 10 nM, with 2-(4-hydroxymethylphenyl)-1H-benzimidazole-4-carboxamide (78, K(i) = 1.6 nM) being one of the most potent. Insight into structure-activity relationships (SAR) for 2-aryl-1H-benzimidazole-4-carboxamides has been enhanced by studying the complex formed between 2-(3-methoxyphenyl)-1H-benzimidazole-4-carboxamide (44, K(i) = 6 nM) and the catalytic domain of chicken PARP. Important hydrogen-bonding and hydrophobic interactions with the protein have been identified for this inhibitor. 2-(4-Hydroxyphenyl)-1H-benzimidazole-4-carboxamide (45, K(i) = 6 nM) potentiates the cytotoxicity of both temozolomide and topotecan against A2780 cells in vitro (by 2.8- and 2.9-fold, respectively).

Figures