1. Academic Validation
  2. Pathways of epoxyeicosatrienoic acid metabolism in endothelial cells. Implications for the vascular effects of soluble epoxide hydrolase inhibition

Pathways of epoxyeicosatrienoic acid metabolism in endothelial cells. Implications for the vascular effects of soluble epoxide hydrolase inhibition

  • J Biol Chem. 2001 May 4;276(18):14867-74. doi: 10.1074/jbc.M011761200.
X Fang 1 T L Kaduce N L Weintraub S Harmon L M Teesch C Morisseau D A Thompson B D Hammock A A Spector
Affiliations

Affiliation

  • 1 Department of Biochemistry, College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA.
Abstract

Epoxyeicosatrienoic acids (EETs) are products of cytochrome P-450 epoxygenase that possess important vasodilating and anti-inflammatory properties. EETs are converted to the corresponding dihydroxyeicosatrienoic acid (DHET) by soluble Epoxide Hydrolase (sEH) in mammalian tissues, and inhibition of sEH has been proposed as a novel approach for the treatment of hypertension. We observed that sEH is present in porcine coronary endothelial cells (PCEC), and we found that low concentrations of N,N'-dicyclohexylurea (DCU), a selective sEH inhibitor, have profound effects on EET metabolism in PCEC cultures. Treatment with 3 microM DCU reduced cellular conversion of 14,15-EET to 14,15-DHET by 3-fold after 4 h of incubation, with a concomitant increase in the formation of the novel beta-oxidation products 10,11-epoxy-16:2 and 8,9-epoxy-14:1. DCU also markedly enhanced the incorporation of 14,15-EET and its metabolites into PCEC lipids. The most abundant product in DCU-treated cells was 16,17-epoxy-22:3, the elongation product of 14,15-EET. Another novel metabolite, 14,15-epoxy-20:2, was present in DCU-treated cells. DCU also caused a 4-fold increase in release of 14,15-EET when the cells were stimulated with a calcium ionophore. Furthermore, DCU decreased the conversion of [3H]11,12-EET to 11,12-DHET, increased 11,12-EET retention in PCEC lipids, and produced an accumulation of the partial beta-oxidation product 7,8-epoxy-16:2 in the medium. These findings suggest that in addition to being metabolized by sEH, EETs are substrates for beta-oxidation and chain elongation in endothelial cells and that there is considerable interaction among the three pathways. The modulation of EET metabolism by DCU provides novel insight into the mechanisms by which pharmacological or molecular inhibition of sEH effectively treats hypertension.

Figures
Products