1. Academic Validation
  2. Genetic toxicology testing of the antimalarial drugs chloroquine and a new analog, AQ-13

Genetic toxicology testing of the antimalarial drugs chloroquine and a new analog, AQ-13

  • Environ Mol Mutagen. 2001;38(1):69-79. doi: 10.1002/em.1052.
E S Riccio 1 P S Lee R A Winegar D J Krogstad D De J C Mirsalis
Affiliations

Affiliation

  • 1 Biopharmaceutical Development Division, SRI International, Menlo Park, California, USA.
Abstract

AQ-13 ([N1-(7-chloro-quinolin-4yl)-3-(N3,N3-diethylamino)propylamine] dihydrochloride trihydrate) is an aminoquinoline antimalarial drug that is effective against chloroquine-resistant strains of Plasmodium falciparum. It is structurally similar to the widely used chloroquine diphosphate (CQ). We evaluated these drugs in the three assays currently recommended by the International Conference on Harmonization (ICH): Bacterial mutagenesis in Salmonella typhimurium and Escherichia coli, mammalian cell mutagenesis in L5178Y mouse lymphoma cells, and micronucleus induction in rat bone marrow. A small but statistically significant increase in revertant colonies was produced by CQ with Salmonella tester strain TA98 without metabolic activation (MA) and by AQ-13 with strain TA1537 both with and without MA. In L5178Y cells, testing of CQ and AQ-13 up to cytotoxic concentrations with and without MA produced no increase in mutant colonies and no increase in the numbers of small colonies. Slight decreases in the ratio of polychromatic erythrocytes (PCE) to red blood cells (RBC) were observed in male and female rats treated with CQ and in females only treated with AQ-13; however, none of these changes was statistically significant. No increases in the frequency of micronucleated PCE were observed at any dose level of CQ or AQ-13. Although both CQ and AQ-13 showed weak Bacterial mutagenicity, this mutagenic effect was not confirmed in either the mouse lymphoma mutagenesis assay or the micronucleus assay. These results indicate that CQ and AQ-13 should pose minimal risk of genotoxic damage in human populations being administered these drugs.

Figures
Products