1. Academic Validation
  2. Reversed-phase high-performance liquid chromatography procedure for the simultaneous determination of S-adenosyl-L-methionine and S-adenosyl-L-homocysteine in mouse liver and the effect of methionine on their concentrations

Reversed-phase high-performance liquid chromatography procedure for the simultaneous determination of S-adenosyl-L-methionine and S-adenosyl-L-homocysteine in mouse liver and the effect of methionine on their concentrations

  • J Chromatogr B Biomed Sci Appl. 2001 Oct 5;762(1):59-65. doi: 10.1016/s0378-4347(01)00341-3.
W Wang 1 P M Kramer S Yang M A Pereira L Tao
Affiliations

Affiliation

  • 1 Department of Pathology, Medical College of Ohio, Toledo 43614-5806, USA.
Abstract

An improved reversed-phase high-performance liquid chromatography (HPLC) procedure with ultraviolet detection is described for the simultaneous determination of S-adenosyl-L-methionine (SAM) and S-adenosyl-L-homocysteine (SAH) in mouse tissue. The method provides rapid resolution of both compounds in a 25-microl perchloric acid extract of the tissue. The limits of detection in 25-microl injection volumes were 22 and 20 pmol for SAM and SAH, respectively. The limits of quantitation in 25-microl injection volumes were 55 and 50 pmol for SAM and SAH, respectively, with recovery consistently >98%. The assay was validated over linear ranges of 55-11000 pmol for SAM and 50-10000 pmol for SAH. The intra-day precision and accuracy were < or =6.4% relative standard deviation (RSD) and 99.9-100.0% for SAH and < or =6.7% RSD and 100.0-100.1% for SAM. The inter-day precision and accuracy were < or =5.9% RSD and 99.9-100.6% for SAH and < or =7.0% RSD and 99.5-100.1% for SAM. Compared to earlier procedures, the HPLC method demonstrated significantly better separation, detection limit and linear range for SAM and SAH determination. The assay demonstrated applicability to monitoring in mice the time-course of the effect of methionine on SAM and SAH levels in the liver. Administering methionine to mice increased by 10-fold the liver concentration of SAM and SAH within 2 h, which then rapidly decreased to the control levels by 8 h. This indicated that methionine was promptly converted to SAM and then rapidly catabolized into SAH. Thus, the metabolism of methionine to SAM should be considered in the supplementation of methionine to maintain SAM levels in the body.

Figures
Products