1. Academic Validation
  2. Functional organization of the yeast proteome by systematic analysis of protein complexes

Functional organization of the yeast proteome by systematic analysis of protein complexes

  • Nature. 2002 Jan 10;415(6868):141-7. doi: 10.1038/415141a.
Anne-Claude Gavin 1 Markus Bösche Roland Krause Paola Grandi Martina Marzioch Andreas Bauer Jörg Schultz Jens M Rick Anne-Marie Michon Cristina-Maria Cruciat Marita Remor Christian Höfert Malgorzata Schelder Miro Brajenovic Heinz Ruffner Alejandro Merino Karin Klein Manuela Hudak David Dickson Tatjana Rudi Volker Gnau Angela Bauch Sonja Bastuck Bettina Huhse Christina Leutwein Marie-Anne Heurtier Richard R Copley Angela Edelmann Erich Querfurth Vladimir Rybin Gerard Drewes Manfred Raida Tewis Bouwmeester Peer Bork Bertrand Seraphin Bernhard Kuster Gitte Neubauer Giulio Superti-Furga
Affiliations

Affiliation

  • 1 Cellzome AG, Meyerhofstrasse 1, 69117 Heidelberg, Germany. anne-claude.gavin@cellzome.com
Abstract

Most cellular processes are carried out by multiprotein complexes. The identification and analysis of their components provides insight into how the ensemble of expressed proteins (proteome) is organized into functional units. We used tandem-affinity purification (TAP) and mass spectrometry in a large-scale approach to characterize multiprotein complexes in Saccharomyces cerevisiae. We processed 1,739 genes, including 1,143 human orthologues of relevance to human biology, and purified 589 protein assemblies. Bioinformatic analysis of these assemblies defined 232 distinct multiprotein complexes and proposed new cellular roles for 344 proteins, including 231 proteins with no previous functional annotation. Comparison of yeast and human complexes showed that conservation across species extends from single proteins to their molecular environment. Our analysis provides an outline of the eukaryotic proteome as a network of protein complexes at a level of organization beyond binary interactions. This higher-order map contains fundamental biological information and offers the context for a more reasoned and informed approach to drug discovery.

Figures