1. Academic Validation
  2. Pharmacological characterisation of [(pX)Phe4]nociceptin(1-13)NH2 analogues. 2. In vivo studies

Pharmacological characterisation of [(pX)Phe4]nociceptin(1-13)NH2 analogues. 2. In vivo studies

  • Naunyn Schmiedebergs Arch Pharmacol. 2002 Jun;365(6):450-6. doi: 10.1007/s00210-002-0549-7.
Anna Rizzi 1 Maria Bonaria Salis Roberto Ciccocioppo Giuliano Marzola Raffaella Bigoni Remo Guerrini Maurizio Massi Paolo Madeddu Severo Salvadori Domenico Regoli Girolamo Calo'
Affiliations

Affiliation

  • 1 Department of Experimental and Clinical Medicine, Section of Pharmacology and Neuroscience Center, University of Ferrara, Via Fossato di Mortara 17-19, 44100 Ferrara, Italy.
Abstract

As part of a structure-activity study focused on the Phe(4) residue of nociceptin (NC) (1-13)NH(2), we identified two highly potent and selective agonists for the OP(4) receptor, [(pF)Phe(4)]NC(1-13)NH(2) and [(pNO(2))Phe(4)]NC(1-13)NH(2), whose in vitro pharmacological profiles have been described in the companion paper. In the present study, we investigated the actions of [(pF)Phe(4)]NC(1-13)NH(2) and compared it with those of NC(1-13)NH(2) in a battery of vivo assays. In the locomotor activity test in mice, 1 nmol NC(1-13)NH(2) given intracerebroventricularly (i.c.v.) caused a significant decrease (about 70% inhibition) in activity for the first 15 min following injection; [(pF)Phe(4)]NC(1-13)NH(2), at the same dose, exerted a similar inhibitory effect that continued until the end of the observation period (30 min). This effect was prevented by the selective OP(4) receptor antagonist [Nphe(1)]NC(1-13)NH(2) (10 nmol, i.c.v.). In the tail-withdrawal assay in mice, [(pF)Phe(4)]NC(1-13)NH(2) mimicked the effects of NC(1-13)NH(2) producing pronociceptive and antimorphine effects following i.c.v. administration. In both experimental paradigms, the actions of [(pF)Phe(4)]NC(1-13)NH(2) were longer lasting (>60 min) compared to those of NC(1-13)NH(2) (CA. 30 min). In unanaesthetised normotensive mice, bolus intravenous (i.v.) injection of 100 nmol/kg of [(pF)Phe(4)]NC(1-13)NH(2) decreased mean blood pressure and heart rate; these effects were longer lasting than those elicited by the same dose of NC(1-13)NH(2). I.c.v. administration of [(pF)Phe(4)]NC(1-13)NH(2) dose-dependently stimulated feeding in rats, and was about tenfold more potent than NC(1-13)NH(2).Collectively, the present data demonstrate that, in a variety of in vivo assays, NC(1-13)NH(2) and [(pF)Phe(4)]NC(1-13)NH(2) mimicked the actions of NC. [(pF)Phe(4)]NC(1-13)NH(2) was more potent and its in vivo effects were longer lasting than those of NC(1-13)NH(2) and NC.

Figures
Products