1. Academic Validation
  2. IL-3 acts directly on osteoclast precursors and irreversibly inhibits receptor activator of NF-kappa B ligand-induced osteoclast differentiation by diverting the cells to macrophage lineage

IL-3 acts directly on osteoclast precursors and irreversibly inhibits receptor activator of NF-kappa B ligand-induced osteoclast differentiation by diverting the cells to macrophage lineage

  • J Immunol. 2003 Jul 1;171(1):142-51. doi: 10.4049/jimmunol.171.1.142.
Shruti M Khapli 1 Latha S Mangashetti S D Yogesha Mohan R Wani
Affiliations

Affiliation

  • 1 National Center for Cell Science, Pune, India.
Abstract

Osteoclasts, the multinucleated cells that resorb bone, differentiate from hemopoietic precursors of the monocyte/macrophage lineage in the presence of M-CSF and receptor activator of NF-kappaB ligand (RANKL). In this study we investigated the role of IL-3 in osteoclast differentiation. We show here that IL-3, a cytokine secreted by activated T lymphocytes, inhibits RANKL-induced osteoclast differentiation by a direct action on early osteoclast precursors. Anti-IL-3 Ab neutralized the inhibitory effect of IL-3 on osteoclast differentiation. In addition, IL-3 inhibits TNF-alpha-induced osteoclast differentiation in bone marrow-derived macrophages. However, IL-3 has no inhibitory effect on mature osteoclasts. In osteoclast precursors, IL-3 prevents RANKL-induced nuclear translocation of NF-kappaB by inhibiting the phosphorylation and degradation of IkappaB. RT-PCR analysis revealed that IL-3 down-regulated c-Fos transcription. Interestingly, the osteoclast precursors in the presence of IL-3 showed strong expression of macrophage markers such as Mac-1, MOMA-2, and F4/80. Furthermore, the inhibitory effect of IL-3 on osteoclast differentiation was irreversible, and the osteoclast precursors preincubated in IL-3 were resistant to RANKL action. Thus, our results reveal for the first time that IL-3 acts directly on early osteoclast precursors and irreversibly blocks RANKL-induced osteoclast differentiation by diverting the cells to macrophage lineage.

Figures