1. Academic Validation
  2. Clocinnamox: a novel, systemically-active, irreversible opioid antagonist

Clocinnamox: a novel, systemically-active, irreversible opioid antagonist

  • J Pharmacol Exp Ther. 1992 Sep;262(3):1051-6.
S D Comer 1 T F Burke J W Lewis J H Woods
Affiliations

Affiliation

  • 1 Department of Psychology, University of Michigan, Ann Arbor.
PMID: 1326622
Abstract

The warm water (55 degrees C) tail-withdrawal procedure was used to assess the analgesic effects of the prototypic mu opioid agonists, morphine and fentanyl, in mice. Both drugs produced full analgesic effects under these conditions, which were dose-dependently antagonized by naltrexone. The pA2 values for naltrexone with morphine and with fentanyl were not significantly different. Low doses (e.g., 0.32 mg/kg) of clocinnamox [C-CAM.14 beta-(p- chlorocinnamoylamino)-7,8-dihydro-N-cyclopropylmethylnormorphin one mesylate] produced rightward shifts in the dose-effect curves for each drug, whereas high doses (e.g., 32 mg/kg) depressed the maximal analgesic response. In addition, it was observed that higher doses of C-CAM were required to produce a shift down in the fentanyl dose-effect curve than were required to produce a shift down in the morphine dose-effect curve, which suggests that fentanyl is more efficacious than morphine. The highest dose of C-CAM (32 mg/kg) antagonized the analgesic effect of morphine for up to 8 days. In contrast, the antagonist activity of naltrexone (100 mg/kg) against morphine lasted for only 2 days. Finally, when naloxone was administered simultaneously with 32 mg/kg C-CAM 2 days before determination of the morphine dose-effect function, the antagonist effect of C-CAM was prevented in a dose-dependent manner. Taken together, these results suggest that C-CAM may be producing its antagonist action at opioid receptors through a nonequilibrium mechanism.

Figures
Products