1. Academic Validation
  2. Endofin recruits TOM1 to endosomes

Endofin recruits TOM1 to endosomes

  • J Biol Chem. 2004 Feb 6;279(6):4670-9. doi: 10.1074/jbc.M311228200.
Li-Fong Seet 1 Ningsheng Liu Brendon J Hanson Wanjin Hong
Affiliations

Affiliation

  • 1 Membrane Biology Laboratory, Institute of Molecular and Cell Biology, Singapore 117609, Singapore. mcbslf@imcb.a-star.edu.sg
Abstract

Endofin is an endosomal protein implicated in regulating membrane trafficking. It is characterized by the presence of a phosphatidylinositol 3-phosphate-binding FYVE domain positioned in the middle of the molecule. To determine its potential effectors or binding partners, we used the carboxyl-terminal half of endofin as bait to screen a human brain cDNA library in a yeast two-hybrid system. Three clones that encode TOM1 were recovered. TOM1 is a protein closely related to the VHS (VPS-27, Hrs, and STAM) domain-containing GGA family. Although the function of the GGAs in mediating Golgi to lysosomal trafficking is well established, the subcellular localization and function of TOM1 remain unknown. Glutathione S-transferase pull-down assays as well as co-immunoprecipitation experiments confirmed that the carboxyl-terminal half of endofin binds specifically to the carboxyl-terminal region of TOM1. Neither SARA nor Hrs, two Other FYVE domain proteins, interact with this region of TOM1. Moreover, endofin does not interact with the analogous region of two Other members of the TOM1 protein family, namely, TOM1-like 1 (TOM1-L1) or TOM1-like 2 (TOM1-L2). The carboxyl-terminal region of TOM1 was used as immunogen to generate TOM1-specific antibody. This antibody can distinguish TOM1 from the Other family members as well as coimmunoprecipitate endogenous endofin. It also revealed the primarily cytosolic distribution of TOM1 in a variety of cell types by immunofluorescence analyses. In addition, sucrose density gradient analysis showed that both TOM1 and endofin can be detected in cellular compartments marked by the early endosomal marker EEA1. A marked recruitment of TOM1 to endosomes was observed in cells overexpressing endofin or its carboxyl-terminal fragment, indicating TOM1 to be an effector for endofin and suggesting a possible role for TOM1 in endosomal trafficking.

Figures