1. Academic Validation
  2. Design of PAP-1, a selective small molecule Kv1.3 blocker, for the suppression of effector memory T cells in autoimmune diseases

Design of PAP-1, a selective small molecule Kv1.3 blocker, for the suppression of effector memory T cells in autoimmune diseases

  • Mol Pharmacol. 2005 Nov;68(5):1254-70. doi: 10.1124/mol.105.015669.
Alexander Schmitz 1 Ananthakrishnan Sankaranarayanan Philippe Azam Kristina Schmidt-Lassen Daniel Homerick Wolfram Hänsel Heike Wulff
Affiliations

Affiliation

  • 1 Department of Medical Pharmacology and Toxicology, Genome and Biomedical Sciences Facility, Room 3502, 451 East Health Sciences Drive, University of California, Davis, Davis, CA 95616, USA.
Abstract

The lymphocyte K+ channel Kv1.3 constitutes an attractive pharmacological target for the selective suppression of terminally differentiated effector memory T (TEM) cells in T cell-mediated autoimmune diseases, such as multiple sclerosis and type 1 diabetes. Unfortunately, none of the existing small-molecule Kv1.3 blockers is selective, and many of them, such as correolide, 4-phenyl-4-[3-(methoxyphenyl)-3-oxo-2-azapropyl]cyclohexanone, and our own compound Psora-4 inhibit the cardiac K+ channel Kv1.5. By further exploring the structure-activity relationship around Psora-4 through a combination of traditional medicinal chemistry and whole-cell patch-clamp, we identified a series of new phenoxyalkoxypsoralens that exhibit 2- to 50-fold selectivity for Kv1.3 over Kv1.5, depending on their exact substitution pattern. The most potent and "drug-like" compound of this series, 5-(4-phenoxybutoxy)psoralen (PAP-1), blocks Kv1.3 in a use-dependent manner, with a Hill coefficient of 2 and an EC50 of 2 nM, by preferentially binding to the C-type inactivated state of the channel. PAP-1 is 23-fold selective over Kv1.5, 33- to 125-fold selective over Other Kv1-family channels, and 500- to 7500-fold selective over Kv2.1, Kv3.1, Kv3.2, Kv4.2, HERG, calcium-activated K+ channels, Na+,Ca2+, and Cl- channels. PAP-1 does not exhibit cytotoxic or phototoxic effects, is negative in the Ames test, and affects cytochrome P450-dependent Enzymes only at micromolar concentrations. PAP-1 potently inhibits the proliferation of human TEM cells and suppresses delayed type hypersensitivity, a TEM cell-mediated reaction, in rats. PAP-1 and several of its derivatives therefore constitute excellent new tools to further explore Kv1.3 as a target for immunosuppression and could potentially be developed into orally available immunomodulators.

Figures
Products