1. Academic Validation
  2. Risperidone and paliperidone inhibit p-glycoprotein activity in vitro

Risperidone and paliperidone inhibit p-glycoprotein activity in vitro

  • Neuropsychopharmacology. 2007 Apr;32(4):757-64. doi: 10.1038/sj.npp.1301181.
Hao-Jie Zhu 1 Jun-Sheng Wang John S Markowitz Jennifer L Donovan Bryan B Gibson C Lindsay DeVane
Affiliations

Affiliation

  • 1 Laboratory of Drug Disposition and Pharmacogenetics, Department of Pharmaceutical Sciences, Medical University of South Carolina, Charleston, SC, USA.
Abstract

Risperidone (RSP) and its major active metabolite, 9-hydroxy-risperidone (paliperidone, PALI), are substrates of the drug transporter P-glycoprotein (P-gp). The goal of this study was to examine the in vitro effects of RSP and PALI on P-gp-mediated transport. The intracellular accumulation of rhodamine123 (Rh123) and doxorubicin (DOX) were examined in LLC-PK1/MDR1 cells to evaluate P-gp inhibition by RSP and PALI. Both compounds significantly increased the intracellular accumulation of Rh123 and DOX in a concentration-dependent manner. The IC(50) values of RSP for inhibiting P-gp-mediated transport of Rh123 and DOX were 63.26 and 15.78 microM, respectively, whereas the IC(50) values of PALI were >100 microM, indicating that PALI is a less potent P-gp inhibitor. Caco-2 and primary cultured rat brain microvessel endothelial cells (RBMECs) were utilized to investigate the possible influence of RSP on intestinal absorption and blood-brain barrier (BBB) transport of coadministered drugs that are P-gp substrates. RSP, 1-50 microM, significantly enhanced the intracellular accumulation of Rh123 in Caco-2 cells by inhibiting P-gp activity with an IC(50) value of 5.87 microM. Following exposure to 10 microM RSP, the apparent permeability coefficient of Rh123 across Caco-2 and RBMECs monolayers was increased to 2.02 and 2.63-fold in the apical to basolateral direction, but decreased to 0.37 and 0.21-fold in the basolateral to apical direction, respectively. These data suggest that RSP and PALI, to a lesser extent, have a potential to influence the pharmacokinetics and hence the pharmacodynamics of coadministered drugs via inhibition of P-gp-mediated transport. However, no human data exist that address this issue. In particular, RSP may interact with its own active metabolite PALI by promoting its brain concentration through inhibiting P-gp-mediated efflux of PALI across endothelial cells of the BBB.

Figures