1. Academic Validation
  2. Negative regulation of MDA5- but not RIG-I-mediated innate antiviral signaling by the dihydroxyacetone kinase

Negative regulation of MDA5- but not RIG-I-mediated innate antiviral signaling by the dihydroxyacetone kinase

  • Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11706-11. doi: 10.1073/pnas.0700544104.
Feici Diao 1 Shu Li Yang Tian Min Zhang Liang-Guo Xu Yan Zhang Rui-Peng Wang Danying Chen Zhonghe Zhai Bo Zhong Po Tien Hong-Bing Shu
Affiliations

Affiliation

  • 1 College of Life Sciences, Peking University, Beijing 100871, China.
Abstract

Viral Infection leads to activation of the transcription factors interferon regulatory factor-3 and NF-kappaB, which collaborate to induce type I IFNs. The RNA helicase proteins RIG-I and MDA5 were recently identified as two cytoplasmic viral RNA sensors that recognize different species of viral RNAs produced during viral replication. In this study, we identified DAK, a functionally unknown dihydroacetone kinase, as a specific MDA5-interacting protein. DAK was associated with MDA5, but not RIG-I, under physiological conditions. Overexpression of DAK inhibited MDA5- but not RIG-I- or TLR3-mediated IFN-beta induction. Overexpression of DAK also inhibited cytoplasmic dsRNA and SeV-induced activation of the IFN-beta promoter, whereas knockdown of endogenous DAK by RNAi activated the IFN-beta promoter, and increased cytoplasmic dsRNA- or SeV-triggered activation of the IFN-beta promoter. In addition, overexpression of DAK inhibited MDA5- but not RIG-I-mediated Antiviral activity, whereas DAK RNAi increased cytoplasmic dsRNA-triggered Antiviral activity. These findings suggest that DAK is a physiological suppressor of MDA5 and specifically inhibits MDA5- but not RIG-I-mediated innate Antiviral signaling.

Figures