1. Academic Validation
  2. Pharmacological characterization of a novel, potent adenosine A1 and A2A receptor dual antagonist, 5-[5-amino-3-(4-fluorophenyl)pyrazin-2-yl]-1-isopropylpyridine-2(1H)-one (ASP5854), in models of Parkinson's disease and cognition

Pharmacological characterization of a novel, potent adenosine A1 and A2A receptor dual antagonist, 5-[5-amino-3-(4-fluorophenyl)pyrazin-2-yl]-1-isopropylpyridine-2(1H)-one (ASP5854), in models of Parkinson's disease and cognition

  • J Pharmacol Exp Ther. 2007 Nov;323(2):708-19. doi: 10.1124/jpet.107.121962.
Takuma Mihara 1 Kayoko Mihara Junko Yarimizu Yasuyuki Mitani Ritsuko Matsuda Hiroko Yamamoto Satoshi Aoki Atsushi Akahane Akinori Iwashita Nobuya Matsuoka
Affiliations

Affiliation

  • 1 Pharmacology Research Laboratories, Astellas Pharma Inc., Ibaraki, Japan. takuma.mihara@jp.astellas.com
Abstract

Central adenosine A(2A) receptor is a promising target for drugs to treat Parkinson's disease (PD), and the central blockade of adenosine A(1) receptor improves cognitive function. In the present study, we investigated the effect of a novel adenosine A(1) and A(2A) dual antagonist, 5-[5-amino-3-(4-fluorophenyl) pyrazin-2-yl]-1-isopropylpyridine-2(1H)-one (ASP5854), in animal models of PD and cognition. The binding affinities of ASP5854 for human A(1) and A(2A) receptors were 9.03 and 1.76 nM, respectively, with higher specificity and no species differences. ASP5854 also showed antagonistic action on A(1) and A(2A) agonist-induced increases of intracellular CA(2+) concentration. ASP5854 ameliorated A(2A) agonist 2-[p-(2-carboxyethyl) phenethylamino]-5'-N-ethylcarboxamidoadenosine (CGS21680)- and haloperidol-induced catalepsy in mice, with the minimum effective doses of 0.32 and 0.1 mg/kg, respectively, and it also improved haloperidol-induced catalepsy in rats at doses higher than 0.1 mg/kg. In unilateral 6-hydroxydopamine-lesioned rats, ASP5854 significantly potentiated l-dihydroxyphenylalanine (L-DOPA)-induced rotational behavior at doses higher than 0.032 mg/kg. ASP5854 also significantly restored the striatal dopamine content reduced by 1-metyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment in mice at doses higher than 0.1 mg/kg. Furthermore, in the rat passive avoidance test, ASP5854 significantly reversed the scopolamine-induced memory deficits, whereas the specific adenosine A(2A) antagonist 8-((E)-2-(3,4-dimethoxyphenyl)ethenyl)-1,3-diethyl-7-methyl-3,7-dihydro-1H-purine-2,6-dione (KW-6002; istradefylline) did not. Scopolamine- or 5H-dibenzo[a,d]cyclohepten-5,10-imine (dizocilpine maleate) (MK-801)-induced impairment of spontaneous alternation in the mouse Y-maze test was ameliorated by ASP5854, whereas KW-6002 did not exert improvement at therapeutically relevant dosages. These results demonstrate that the novel, selective, and orally active dual adenosine A(1) and A(2A) receptors antagonist ASP5854 improves motor impairments, is neuroprotective via A(2A) antagonism, and also enhances cognitive function through A(1) antagonism.

Figures
Products