1. Academic Validation
  2. 3,17-disubstituted 2-alkylestra-1,3,5(10)-trien-3-ol derivatives: synthesis, in vitro and in vivo anticancer activity

3,17-disubstituted 2-alkylestra-1,3,5(10)-trien-3-ol derivatives: synthesis, in vitro and in vivo anticancer activity

  • J Med Chem. 2007 Sep 6;50(18):4431-43. doi: 10.1021/jm070405v.
Christian Bubert 1 Mathew P Leese Mary F Mahon Eric Ferrandis Sandra Regis-Lydi Philip G Kasprzyk Simon P Newman Yaik T Ho Atul Purohit Michael J Reed Barry V L Potter
Affiliations

Affiliation

  • 1 Medicinal Chemistry, Department of Pharmacy and Pharmacology & Sterix Ltd., University of Bath, Bath BA2 7AY, UK.
Abstract

Estradiol-3,17-O,O-bis-sulfamates inhibit Steroid Sulfatase (STS), Carbonic Anhydrase (CA), and, when substituted at C-2, Cancer cell proliferation and angiogenesis. C-2 Substitution and 17-sulfamate replacement of the estradiol-3,17-O,O-bis-sulfamates were explored with efficient and practical syntheses developed. Evaluation against human Cancer cell lines revealed the 2-methyl derivative 27 (DU145 GI(50) = 0.38 microM) as the most active novel bis-sulfamate, while 2-ethyl-17-carbamate derivative 52 (GI(50) = 0.22 microM) proved most active of its series (cf. 2-ethylestradiol-3,17-O,O-bis-sulfamate 4 GI(50) = 0.21 microM). Larger C-2 substituents were deleterious to activity. 2-Methoxy-17-carbamate 50 was studied by X-ray crystallography and was surprisingly 13-fold weaker as an STS inhibitor compared to parent bis-sulfamate 3. The potential of 4 as an orally dosed anti-tumor agent is confirmed using breast and prostate Cancer xenografts. In the MDA-MB-231 model, dramatic reduction in tumor growth or regression was observed, with effects sustained after cessation of treatment. 3-O-Sulfamoylated 2-alkylestradiol-17-O-carbamates and sulfamates have considerable potential as Anticancer agents.

Figures