1. Academic Validation
  2. IL-6, but not IL-4, stimulates chemokinesis and TNF stimulates chemotaxis of tissue mast cells: involvement of both mitogen-activated protein kinases and phosphatidylinositol 3-kinase signalling pathways

IL-6, but not IL-4, stimulates chemokinesis and TNF stimulates chemotaxis of tissue mast cells: involvement of both mitogen-activated protein kinases and phosphatidylinositol 3-kinase signalling pathways

  • APMIS. 2009 Aug;117(8):558-67. doi: 10.1111/j.1600-0463.2009.02518.x.
Anna Misiak-Tłoczek 1 Ewa Brzezińska-Błaszczyk
Affiliations

Affiliation

  • 1 Department of Experimental Immunology, Medical University of Łódź, Łódź, Poland.
Abstract

An increase in the number of mast cells within tissues is observed in many pathophysiological conditions. Current data indicate that migration of mature mast cells might be one of the key mechanisms responsible for rapid local accumulation of these cells. Considering that interleukin (IL)-6 and IL-4, as well as tumour necrosis factor (TNF), influence mast cell activity in various ways, the purpose of the current study was to examine whether these cytokines function as rat peritoneal mast cell chemoattractants. We showed that IL-4, in the concentration range from 10(-6) to 10(-3) ng/ml, did not induce a mast cell migratory response, even in the presence of laminin and fibronectin. Under the same experimental conditions, mast cells were shown to migrate in response to IL-6 stimulation in the presence of laminin. The optimal concentration of IL-6 for maximal migration of mast cells was 10(-4) ng/ml (i.e. approximately 5 nM). In comparison, the optimal concentration of TNF for maximal migration of mast cells was 5 x 10(-5) ng/ml (i.e. approximately 3 fM). IL-6-stimulated mast cell migration was the result of chemokinesis, whereas TNF-induced migration was the result of chemotaxis. Mast cell migratory responses to IL-6 and TNF were entirely blocked by specific anti-IL-6R and anti-TNFR1 Antibodies. We also documented that the migration response of mast cells to stimulation with IL-6 and TNF was mediated through signal transduction pathways involving mitogen-activated protein kinases and phosphatidylinositol 3-kinase. Taken together, our results indicate that IL-6, as well as TNF, induces tissue mast cell migration. Thus, these proinflammatory cytokines can be responsible for mast cell accumulation at the site of diverse conditions accompanied by inflammation.

Figures