1. Academic Validation
  2. Human AlkB homolog ABH8 Is a tRNA methyltransferase required for wobble uridine modification and DNA damage survival

Human AlkB homolog ABH8 Is a tRNA methyltransferase required for wobble uridine modification and DNA damage survival

  • Mol Cell Biol. 2010 May;30(10):2449-59. doi: 10.1128/MCB.01604-09.
Dragony Fu 1 Jennifer A N Brophy Clement T Y Chan Kyle A Atmore Ulrike Begley Richard S Paules Peter C Dedon Thomas J Begley Leona D Samson
Affiliations

Affiliation

  • 1 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02138, USA.
Abstract

tRNA nucleosides are extensively modified to ensure their proper function in translation. However, many of the Enzymes responsible for tRNA modifications in mammals await identification. Here, we show that human AlkB homolog 8 (ABH8) catalyzes tRNA methylation to generate 5-methylcarboxymethyl uridine (mcm(5)U) at the wobble position of certain tRNAs, a critical anticodon loop modification linked to DNA damage survival. We find that ABH8 interacts specifically with tRNAs containing mcm(5)U and that purified ABH8 complexes methylate RNA in vitro. Significantly, ABH8 depletion in human cells reduces endogenous levels of mcm(5)U in RNA and increases cellular sensitivity to DNA-damaging agents. Moreover, DNA-damaging agents induce ABH8 expression in an ATM-dependent manner. These results expand the role of mammalian AlkB proteins beyond that of direct DNA repair and support a regulatory mechanism in the DNA damage response pathway involving modulation of tRNA modification.

Figures