1. Academic Validation
  2. Sphingosine kinase interacting protein is an A-kinase anchoring protein specific for type I cAMP-dependent protein kinase

Sphingosine kinase interacting protein is an A-kinase anchoring protein specific for type I cAMP-dependent protein kinase

  • Chembiochem. 2010 May 3;11(7):963-71. doi: 10.1002/cbic.201000058.
Duangnapa Kovanich 1 Marcel A G van der Heyden Thin Thin Aye Toon A B van Veen Albert J R Heck Arjen Scholten
Affiliations

Affiliation

  • 1 Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center forBiomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
Abstract

The compartmentalization of kinases and phosphatases plays an important role in the specificity of second-messenger-mediated signaling events. Localization of the cAMP-dependent protein kinase is mediated by interaction of its regulatory subunit (PKA-R) with the versatile family of A-kinase-anchoring proteins (AKAPs). Most AKAPs bind avidly to PKA-RII, while some have dual specificity for both PKA-RI and PKA-RII; however, no mammalian PKA-RI-specific AKAPs have thus far been assigned. This has mainly been attributed to the observation that PKA-RI is more cytosolic than the more heavily compartmentalized PKA-RII. Chemical proteomics screens of the cAMP interactome in mammalian heart tissue recently identified sphingosine kinase type 1-interacting protein (SKIP, SPHKAP) as a putative novel AKAP. Biochemical characterization now shows that SPHKAP can be considered as the first mammalian AKAP that preferentially binds to PKA-RIalpha. Recombinant human SPHKAP functions as an RI-specific AKAP that utilizes the characteristic AKAP amphipathic helix for interaction. Further chemical proteomic screening utilizing differential binding characteristics of specific cAMP resins confirms SPHKAPs endogenous specificity for PKA-RI directly in mammalian heart and spleen tissue. Immunolocalization studies revealed that recombinant SPHKAP is expressed in the cytoplasm, where PKA-RIalpha also mainly resides. Alignment of SPHKAPs' amphipathic helix with peptide models of PKA-RI- or PKA-RII-specific anchoring domains shows that it has largely only PKA-RIalpha characteristics. Being the first mammalian PKA-RI-specific AKAP with cytosolic localization, SPHKAP is a very promising model for studying the function of the less explored cytosolic PKA-RI signaling nodes.

Figures