1. Academic Validation
  2. Design, synthesis, and structure-activity relationship studies of novel 2,4,6-trisubstituted-5-pyrimidinecarboxylic acids as peroxisome proliferator-activated receptor gamma (PPARgamma) partial agonists with comparable antidiabetic efficacy to rosiglitazone

Design, synthesis, and structure-activity relationship studies of novel 2,4,6-trisubstituted-5-pyrimidinecarboxylic acids as peroxisome proliferator-activated receptor gamma (PPARgamma) partial agonists with comparable antidiabetic efficacy to rosiglitazone

  • J Med Chem. 2010 Jul 8;53(13):5012-24. doi: 10.1021/jm100443s.
Shigeki Seto 1 Kyoko Okada Koichi Kiyota Shigeki Isogai Maki Iwago Takehiro Shinozaki Yoshiaki Kitamura Yasushi Kohno Koji Murakami
Affiliations

Affiliation

  • 1 Discovery Research Laboratories, Kyorin Pharmaceutical Co., Ltd., 2399-1, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan. shigeki.seto@mb.kyorin-pharm.co.jp
Abstract

A series of novel 2,4,6-trisubstitutedpyrimidine-5-carboxylic acid derivatives were designed and synthesized with the intent of producing a Peroxisome Proliferator-activated Receptor gamma (PPARgamma) partial agonist for antidiabetic agents. A pharmacophore-driven approach of in-house screening identified compound 7, which led to the identification of compound 9 featuring a 2,4,6-trisubstituted pyrimidine-5-carboxylic acid core. Structure-activity relationship studies of 9 resulted in identifying 4,6-bisbenzylthio-2-methylthiopyrimidine-5-carboxylic acid (50) as the most attractive of all the screened compounds. The X-ray cocrystal structure of 50 bound on PPARgamma revealed that the key hydrogen bond interactions, which are not related to the activation function 2 (AF-2) site, are different from those of the full agonist. Compound 50 showed typical PPARgamma partial agonist properties in the PPARgamma-GAL4 functional assay and weaker differentiation of adipocytes in 3T3-L1 cells than observed with rosiglitazone. Furthermore, 50 displayed comparable antidiabetic efficacy with rosiglitazone in db/db mice, although its potency is 10-fold weaker than that of rosiglitazone.

Figures