1. Academic Validation
  2. Melittin enhances apoptosis through suppression of IL-6/sIL-6R complex-induced NF-κB and STAT3 activation and Bcl-2 expression for human fibroblast-like synoviocytes in rheumatoid arthritis

Melittin enhances apoptosis through suppression of IL-6/sIL-6R complex-induced NF-κB and STAT3 activation and Bcl-2 expression for human fibroblast-like synoviocytes in rheumatoid arthritis

  • Joint Bone Spine. 2011 Oct;78(5):471-7. doi: 10.1016/j.jbspin.2011.01.004.
Seong-Kyu Kim 1 Ki-Yeun Park Wern-Chan Yoon Sung-Hoon Park Kwan-Kyu Park Dae-Hyun Yoo Jung-Yoon Choe
Affiliations

Affiliation

  • 1 Department of Internal Medicine, Catholic University of Daegu School of Medicine, 3056-6 Daemyung 4-Dong, Namgu, Daegu 705-718, Republic of Korea.
Abstract

Objective: Resistance to Apoptosis of fibroblast-like synoviocytes (FLS) is considered as a major characteristic in RA. This study was designed to identify whether melittin has a pro-apoptotic effect in IL-6/sIL6R-stimulated human FLS by investigating the expression of mitochondrial apoptosis-related genes, nuclear factor-κB (NF-κB), and signal transducer and activators of transcription (STAT) activation.

Methods: Cell viability was determined using a MTT assay after melittin treatment. Expressions of STAT3 and mitochondrial apoptosis-related genes induced by the IL-6/sIL-6R complex were determined by real time-polymerase chain reaction and western blotting. The expression of NF-κB p65 following IL-6 stimulation was determined by western blot analysis. The effects of melittin on the expression of apoptosis-related genes and the transcription factors NF-κB p65 and STAT3 were assessed in FLS. Apoptosis of FLS was determined by TUNEL-labeling to detect DNA strand breaks and DNA fragmentation assays. Caspase-3 activity was determined by a colorimetric assay.

Results: IL-6/sIL-6R induced the activation of the transcription factors, STAT3, NF-κB p65 (nucleus), and Bcl-2. Melittin increased the expression of pro-apoptosis-related molecules, namely Caspase-3, caspase-9, Apaf-1, and cytosolic cytochrome c, in a dose-dependent manner after treatment with IL-6/sIL-6R. Melittin inhibited STAT3 activation, translocation of NF-κB p65 into the nucleus, and expression of anti-apoptotic genes such as Bcl-2 and mitochondrial cytochrome c.

Conclusions: The pro-apoptotic effects of melittin likely result from inhibition of the activation of the transcription factors, STAT3 and NF-κB p65, and regulation of mitochondrial apoptosis-related genes. Melittin is thus a promising therapeutic option for RA as it induces Apoptosis in apoptosis-resistant synoviocytes.

Figures