1. Academic Validation
  2. Synthesis and biological evaluation of novel 5-alkyl-2-arylthio-6-((3,4-dihydroquinolin-1(2H)-yl)methyl)pyrimidin-4(3H)-ones as potent non-nucleoside HIV-1 reverse transcriptase inhibitors

Synthesis and biological evaluation of novel 5-alkyl-2-arylthio-6-((3,4-dihydroquinolin-1(2H)-yl)methyl)pyrimidin-4(3H)-ones as potent non-nucleoside HIV-1 reverse transcriptase inhibitors

  • Bioorg Med Chem. 2011 Jul 15;19(14):4366-76. doi: 10.1016/j.bmc.2011.05.024.
Jing Zhang 1 Peng Zhan Jingde Wu Zhenyu Li Yan Jiang Weiying Ge Christophe Pannecouque Erik De Clercq Xinyong Liu
Affiliations

Affiliation

  • 1 Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China.
Abstract

A series of novel S-DABO analogues of 5-alkyl-2-arylthio-6-((3,4-dihydroquinolin-1(2H)-yl)methyl)pyrimidin-4(3H)-ones were synthesized and evaluated as inhibitors of human immunodeficiency virus type-1 (HIV-1). Among them, the most potent HIV-1 inhibitors were compounds 6c1,6c6, and 6b1 (EC(50)=0.24 ± 0.05, 0.38 ± 0.13, 0.39 ± 0.05 μM, respectively), which possess improved or similar HIV-1 inhibitory activity compared with nevirapine (NVP) (EC(50)=0.21 μM) and delavirdine (DLV) (EC(50)=0.32 μM). None of these compounds were active against HIV-2 replication. Furthermore, Enzyme inhibitory assays were performed with selected derivatives against HIV-1 wtRT, confirming that the main target of these compounds is the HIV-1 RT and these new S-DABOs are acting as NNRTIs. The preliminary structure-activity relationship (SAR) of these new congeners is discussed briefly and rationalized by docking studies.

Figures