1. Academic Validation
  2. OCRL controls trafficking through early endosomes via PtdIns4,5P₂-dependent regulation of endosomal actin

OCRL controls trafficking through early endosomes via PtdIns4,5P₂-dependent regulation of endosomal actin

  • EMBO J. 2011 Oct 4;30(24):4970-85. doi: 10.1038/emboj.2011.354.
Mariella Vicinanza 1 Antonella Di Campli Elena Polishchuk Michele Santoro Giuseppe Di Tullio Anna Godi Elena Levtchenko Maria Giovanna De Leo Roman Polishchuk Lisette Sandoval Maria-Paz Marzolo Maria Antonietta De Matteis
Affiliations

Affiliation

  • 1 Telethon Institute of Genetics and Medicine, Naples, Italy.
Abstract

Mutations in the phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P(2)) 5-phosphatase OCRL cause Lowe syndrome, which is characterised by congenital cataracts, central hypotonia, and renal proximal tubular dysfunction. Previous studies have shown that OCRL interacts with components of the endosomal machinery; however, its role in endocytosis, and thus the pathogenic mechanisms of Lowe syndrome, have remained elusive. Here, we show that via its 5-phosphatase activity, OCRL controls early endosome (EE) function. OCRL depletion impairs the recycling of multiple classes of receptors, including megalin (which mediates protein reabsorption in the kidney) that are retained in engorged EEs. These trafficking defects are caused by ectopic accumulation of PtdIns4,5P(2) in EEs, which in turn induces an N-WASP-dependent increase in endosomal F-actin. Our data provide a molecular explanation for renal proximal tubular dysfunction in Lowe syndrome and highlight that tight control of PtdIns4,5P(2) and F-actin at the EEs is essential for exporting cargoes that transit this compartment.

Figures