1. Academic Validation
  2. Cyclo(His-Pro) exerts anti-inflammatory effects by modulating NF-κB and Nrf2 signalling

Cyclo(His-Pro) exerts anti-inflammatory effects by modulating NF-κB and Nrf2 signalling

  • Int J Biochem Cell Biol. 2012 Mar;44(3):525-35. doi: 10.1016/j.biocel.2011.12.006.
Alba Minelli 1 Silvia Grottelli Annalisa Mierla Francesco Pinnen Ivana Cacciatore Ilaria Bellezza
Affiliations

Affiliation

  • 1 Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Sezione di Biochimica Cellulare, Università di Perugia, Via del Giochetto, 06123 Perugia, Italy. aminelli@unipg.it
Abstract

Cyclo(His-Pro) is an endogenous cyclic dipeptide that exerts oxidative damage protection by selectively activating the transcription factor Nrf2 signalling pathway. Given the existence of a tight interplay of the Nrf2/NF-κB systems and that the pro-inflammatory response is governed by transcription factor NF-κB, here we sought to investigate whether and how cyclo(His-Pro) interferes with the cross-talk between the antioxidant Nrf2/heme oxygenase-1 and the pro-inflammatory NF-κB pathways. By knocking down the Nrf2 gene, we confirmed that cyclo(His-Pro) inhibits NF-κB nuclear accumulation induced by paraquat in rat pheochromocytoma PC12 cells via the Nrf2/heme oxygenase-1 pathway. The protection required functional heme oxygenase-1 activity, since zinc protoporphyrin IX, a heme oxygenase-1 inhibitor, prevented NF-κB inhibition, and the presence of exogenous carbon monoxide and bilirubin afforded cytoprotection against paraquat-induced toxicity by preventing NF-κB activation. Cyclooxygenase-2 and matrix metalloproteinase 3, two gene products governed by NF-κB, were down-regulated by cyclo(His-Pro) and up-regulated in heme oxygenase-1 knock-down cells. We validated the general mechanism underlying the anti-inflammatory effects by treating PC12 and murine microglial BV2 cells with different pro-inflammatory agents. Finally, cyclo(His-Pro) reduced 12-otetradecanoylphorbol-13-acetate-induced oedema in mouse ear inflammation model. Results, by showing that cyclo(His-pro) suppresses the pro-inflammatory NF-κB signalling via the Nrf2-mediated heme oxygenase-1 activation, contribute to the understanding of essential cellular pathways and allow the proposal of cyclo(His-Pro) as an in vivo anti-inflammatory compound.

Figures
Products