1. Academic Validation
  2. Generation and exploration of new classes of antitubercular agents: The optimization of oxazolines, oxazoles, thiazolines, thiazoles to imidazo[1,2-a]pyridines and isomeric 5,6-fused scaffolds

Generation and exploration of new classes of antitubercular agents: The optimization of oxazolines, oxazoles, thiazolines, thiazoles to imidazo[1,2-a]pyridines and isomeric 5,6-fused scaffolds

  • Bioorg Med Chem. 2012 Apr 1;20(7):2214-20. doi: 10.1016/j.bmc.2012.02.025.
Garrett C Moraski 1 Lowell D Markley Mayland Chang Sanghyun Cho Scott G Franzblau Chang Hwa Hwang Helena Boshoff Marvin J Miller
Affiliations

Affiliation

  • 1 Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46656, USA.
Abstract

Tuberculosis (TB) is a devastating disease resulting in a death every 20s. Thus, new drugs are urgently needed. Herein we report ten classes of compounds-oxazoline, oxazole, thiazoline, thiazole, pyrazole, pyridine, isoxazole, imidazo[1,2-a]pyridine, imidazo[1,2-a]pyrimidine and imidazo[1,2-c]pyrimidine-which have good (micromolar) to excellent (sub-micromolar) antitubercular potency. The 5,6-fused heteroaromatic compounds were the most potent with MIC's as low as <0.195 μM (9 and 11). Overall, the imidazo[1,2-a]pyridine class was determined to be most promising, with potency similar to isoniazid and PA-824 against replicating Mtb H(37)Rv, clinically relevant drug sensitive, multi- and extensively resistant Mtb strains as well as having good in vitro metabolic stability.

Figures